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Stigmergy is a generic coordination mechanism widely used by animal societies, in
which traces left by individuals in a medium guide and stimulate their subsequent
actions. In humans, new forms of stigmergic processes have emerged through the
development of online services that extensively use the digital traces left by their
users. Here, we combine interactive experiments with faithful data-based modeling to
investigate how groups of individuals exploit a simple rating system and the resulting
traces in an information search task in competitive or noncompetitive conditions. We
find that stigmergic interactions can help groups to collectively find the cells with the
highest values in a table of hidden numbers. We show that individuals can be classified
into three behavioral profiles that differ in their degree of cooperation. Moreover, the
competitive situation prompts individuals to give deceptive ratings and reinforces the
weight of private information versus social information in their decisions.

social influence | stigmergy | collective intelligence | digital traces | computational modeling

The exchange of social information is the core mechanism by which groups of
individuals are able to coordinate their activities and collectively solve problems (1–5).
Social information allows individuals to adapt to their environment faster and/or
better than through collecting personal information alone (6–10). The use of social
information thus provides evolutionary advantages to animal groups and occurs in many
contexts, such as foraging, decision-making, division of labor, nest building, or colony
defense (1, 2, 11, 12).

Quite often, social information is indirectly shared between individuals: Some of them
leave traces of their activities in the environment, and others can use this information
to guide their own behavior and inform their own decisions (13). This form of indirect
communication, also called stigmergy, in which the trace of an action left on a medium
stimulates the performance of a subsequent action which produces another trace and so
on, is widely used by animal societies and especially social insects to self-organize their
collective behaviors (14–16). These stigmergic interactions that allow the emergence of
coordinated activities out of local independent actions likely played a major role in the
evolution of cooperativity within groups of organisms (17, 18).

In humans, with the digitalization of society and economies, social information
has increasingly taken the form of digital traces, which are the data individuals leave
either actively or passively when using the Internet (19–21). New forms of stigmergic
processes have been identified since these digital traces are largely exploited in social
networks and in electronic commerce, in particular through the use of rating and
recommendation systems that can help participants to discover new options and make
better choices (22–26). However, individuals do not use social information in the same
way. Some individuals exploit it to make their choices, while others may simply ignore it
and only use their own private information, or can even go against the message delivered
by social information (27). In fact, the same individual can even change the way they
provide and use social information depending on the context (28).

Moreover, the use of digital traces is very sensitive to noise and manipulation (29, 30).
Indeed, in competitive situations, malicious spammers can manipulate social information
by deliberately giving high (respectively, low) ratings to certain low- (respectively, high-)
quality items. Therefore, knowing the way individuals share and use digital traces in
different contexts is a crucial step to understanding how groups of individuals can
cooperate through stigmergic interactions and can exhibit collective intelligence. Despite
their increasing importance in human groups, very little research on stigmergic processes
has been done so far (31, 32).

The aims of this study are twofold. First, we study through a combination of experi-
ments and computational modeling how indirect interactions between individuals in a
human group involving the use of traces allow them to cooperate during an information
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search task. Second, we study how a competitive or noncompet-
itive context influences the way in which individuals exchange
and use the social information embedded in the traces of their
past actions to perform the information search task.

Through the development of an interactive web application
and the use of data-based modeling, we identify the behavioral
and cognitive strategies combined with stigmergic interactions
that govern individual decisions. The simulation results of our
faithful computational model provide clear evidence that the
collective behavioral dynamics observed in experiments can be
predicted with the precise knowledge of the way individuals use
and combine private and social information.

Experimental Design

The experimental setup was designed to investigate in fully
controllable conditions how groups of individuals leave and
exploit digital traces using a simple five-star rating system similar
to the ones used by many online marketplaces and platforms.
There, users can evaluate products, services, or sellers and exploit
the ratings to help them find the best options corresponding to
their expectation.

Here, we study the individual and collective performance of
groups of five individuals in a task where each participant has
to find the highest values in a 15 × 15 table of 225 cells, each
containing a hidden value (Fig. 1A). In our setup, the cells would
represent the available options, and their value would correspond
to their intrinsic quality. SI Appendix, Fig. S1A presents an
example of a table used in our experiments, where the cell
values are explicitly shown. Numbers with values ranging from
0 to 99 were randomly distributed in the cells of the table, and
SI Appendix, Fig. S1B shows the distribution of these cell values.
To carry out these experiments, we developed an interactive web
application that allows the five group members to independently
explore the same table (Fig. 1 B and C ).

Each experiment includes 20 successive rounds. During each
round, each participant has to successively visit and rate three
distinct cells. Once a participant discovers the hidden value of a
cell, they must rate that cell on a five-star scale. The round ends
when everyone in the group has visited and rated three different
cells.

A B

C

Fig. 1. Experimental setup. (A) Screenshot of the table at round t = 10, as
seen by a participant. In this round, the participant has already visited and
rated two cells marked with black crosses. The participant just visited the third
cell of value 21 and must rate that cell on a five-star scale. The score of the
participant will then depend on the considered rule: In the noncompetitive
Rule 1, the score will increase by 0, and by 21 in the competitive Rule 2.
(B) Pictures of the experimental room and (C) of the user interface that
participants used during the experiment.

At the start of the next round, the color of each cell in the
table is updated according to the fraction of stars that have been
used to rate the cell since the beginning of the experiment, that
is, the number of stars in the cell divided by the total number of
stars in all cells. The color scale varies between white (0 %) and
black (100 %) through a gradient of shades of red (SI Appendix,
Fig. S1C ). Thus, the cells that have received the highest fraction
of stars since the beginning of the experiment will be clearly visible
to all the individuals belonging to the same group. The resulting
color map on the table acts like a cumulative long-term collective
memory for the group, which is updated at each round. Note
that the subjects cannot infer the precise value of the fraction of
stars in a cell from its color, but only a rough estimate. However,
they can certainly exploit the colors to compare the fraction of
stars in the different cells of the table and to identify the cells
with a high fraction of stars. Fig. 1A shows an example of a table
displaying the participants’ ratings as a color map after 10 rounds
during one experiment.

We also investigate the impact of a competitive versus a
noncompetitive condition on the behavior of participants and the
individual and collective performance. In particular, we focus our
analysis on the way individuals visit and rate cells and how they
use the traces resulting from their ratings and those left by the
other group members to guide their choices. In each experiment,
we studied the individual and collective behaviors of two groups
performing the same task in parallel and independently. In the
noncompetitive condition, hereafter called Rule 1, the actions
(cell visits and ratings) of the participants do not affect the reward
they received at the end of an experiment that always remains
constant. On the other hand, in the competitive condition,
hereafter called Rule 2, the score of a participant increases at each
round by the value of the cells they visit, but remains unaffected
by their rating of these cells. Then, the cumulative score of
participants over an entire session (12 experiments) determines
their monetary reward, which depends on their ranking among
the 10 participants and not just among the 5 members of
their group (see Materials and Methods for the actual payment
method).

This experimental design allowed us to study the impact of an
intragroup competition since each individual in a group competes
with the four other members of their group. However, there is
also an implicit intergroup competition since each individual also
competes with the five members of the other group for the best
rank. SI Appendix, Fig. S2 illustrates the actions performed by
each participant in one group and the color maps associated with
the cells in the table resulting from their ratings. Movies S1A
(Rule 1) and S2A (Rule 2) show examples of the dynamics
of a typical experimental run where the participants achieved
a group score near the observed mean group score. In the
corresponding Movies S3 and S4, we present an experimental
run where the participants obtained a group score 50 % higher
than the observed mean group score. Movie S5 features the same
results as Movies S1–S4 but without the cell values, to better
identify the different shades of red and to better reflect what the
subjects actually saw during the experiment.

In the next section, we present the results of this experiment
mimicking several processes at play in actual five-star rating
systems: i) the exploration by the participants of available options
(cells in our experiment), which is greatly influenced by their
current ratings; ii) the rating on a five-star scale of the options
selected by the participants, which ultimately affects the future
ratings of these different options. The ratings in our experiments,
seen by all participants, are digital traces eliciting stigmergic
processes allowing the participants to collectively identify the
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best options. In addition, our basic research study also explores
the impact of competition in this exploration/rating context, by
submitting the participants to noncompetitive or competitive in-
centives. Although this competitive aspect is less relevant in real-
life situations exploiting five-star rating systems, our experimental
setup and our modeling approach allow us, more generally,
to study the interplay between exploration strategies, rating
strategies, private and shared information, and competition.

Results

Collective Dynamics. In this section, we analyze the performance
of individuals and groups as well as the dynamics of collective
exploration and ratings in both rules. To do so, we introduce
a set of precise observables, which are described in detail in
Materials and Methods: the score of individuals or the mean
score of their group; the mean value of the cells weighted by
the fraction of stars or the fraction of visits at round t (p(t) and
q(t)) or up to round t (P(t) and Q(t)); the effective number of
cells (inverse participation ratio; IPR) over which the stars and
visits are distributed at round t and up to round t; the fidelity
F , which quantifies whether the distribution of stars or visits in
each cell coincides with the actual distribution of the cell values.

Fig. 2 A and B show, respectively, the Probability Distribution
Function (PDF) of the score S of individuals obtained after the
20 rounds and the score Ŝ of groups, i.e., the sum of the scores
of the individuals belonging to the same group. In Rule 1, all
scores are equal to 0. Thus, in order to compare the individual
and collective performance in the two rules, each individual is
assigned a virtual score computed in the same way as in Rule 2.
The mean score is higher in Rule 2, showing that this competitive
condition provides a stronger incentive to visit high-value cells
than in Rule 1: 〈S/Smax〉 = 0.24± 0.01 in Rule 1 vs. 〈S/Smax〉 =

0.40 ± 0.01 in Rule 2, where Smax = 5,420 is the maximum
theoretical score.

Fig. 2 C–F show that the average value of the visited cells
increases with the number of rounds as the participants discover,
visit, and rate cells with higher values. Although p(t) and P(t)
are higher in Rule 1 than in Rule 2 (Fig. 2 D and F ), the average
value of visited cells at round t, q(t), and up to round t, Q(t), are
significantly higher in Rule 2 (Fig. 2C andE). As we will see later,
this apparent paradox is due to the fact that the strategies used by
individuals to rate cells in Rule 1 and Rule 2 are very different. In
particular, in the competitive Rule 2, some individuals choose to
give an average or even a low rating to cells having a high value,
presumably to avoid reporting these cells to the other members
of their group.

Fig. 2 G and I show that individuals visit significantly more
different cells in Rule 1 than in Rule 2, with IPR(Q(t)) growing
up to the final round t = 20 in Rule 1, while it starts decaying
after round t = 7 in Rule 2. In particular, at the final round
t = 20 of the experiment, IPR(Q(t = 20)) is roughly four
times larger in Rule 1 than in Rule 2. As we will see in the next
section, the lower exploration observed in Rule 2 is mostly due
to the fact that the individuals revisit a lot more cells with high
values instead of exploring new cells, in order to maximize their
score. Moreover, in each round, individuals allocate more stars in
Rule 1 compared to Rule 2 (Fig. 2H ), but overall, they allocate
stars to the same number of cells (Fig. 2J ).

Fig. 2 K and L show that in both conditions, the fidelity
increases with round t, suggesting that the correlations between
the participants’ visits/ratings and the cell values increase with
time. In the final round of the experiment, the fidelity of ratings
F(P(t = 20),V) is significantly higher in Rule 1 than in Rule 2.
As we mentioned previously, in Rule 1, the participants explore
the table a lot more, and their ratings better reflect the value of
the cells that they have discovered.

A

B D F H J L

C E G I K

Fig. 2. Collective performance and dynamics of collective exploration and ratings. For the non-competitive Rule 1 (blue) and competitive Rule 2 (orange), the
symbols correspond to the experimental results, and the solid lines are the predictions of the model. (A) Probability distribution function (PDF) of the scores of
individuals S, and (B) of the groups Ŝ, respectively normalized by their theoretical maxima Smax and Ŝmax = 5Smax. The dotted vertical lines are the mean score
in the experiment, and the dashed vertical lines are the mean scores in the model. (C) Average value of the cells visited at round t, q(t). (D) Average value of the
cells visited weighted by their ratings at round t, p(t). (E) Average value of the cells visited up to round t, Q(t). (F ) Average value of the cells visited weighted by
their ratings up to round t, P(t). (G) Inverse participation ratio of the visits IPR(q(t)) and (H) the ratings IPR(p(t)) at round t, measuring the effective number of
cells over which the visits and ratings are distributed at round t. (I) Inverse participation ratio of the visits IPR(Q(t)) and (J) the ratings IPR(P(t)) up to round t,
measuring the effective number of cells over which the visits and ratings are distributed up to round t. (K ) Fidelity to the cell value distribution of the distribution
of visits, F(Q(t),V), and, (L) of ratings, F(P(t),V).
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Individual Behaviors. In this section, we characterize the behav-
iors of individuals and their strategies to visit and rate cells, i.e.,
the way they use social information in the form of colored traces
resulting from their collective past actions. Moreover, we also
quantify the impact of intragroup competition on their behaviors.
Choosing the cells to be visited. The probabilities of finding the
cells with the highest values are higher in Rule 1 than in Rule 2
(Fig. 3 A–C and SI Appendix, Fig. S3). In Rule 1, individuals
find the best cells more often than would be expected if they had
searched randomly, illustrating the cooperative effect induced
by the use of the digital traces by individuals within groups.
In Rule 2, we observe the opposite phenomenon: Individuals
often revisit the cells that they consider high enough to improve
their score, without taking the risk of exploring new low-value
cells. However, this kind of hedging also hampers their ability to
discover even better cells.

We define V1(t), V2(t), and V3(t) as the average of the
first-, second-, and third-best values of the cells visited by the
participants at round t. Fig. 3D–F shows that in both conditions,
the average values of these 3 cells increase with round t. However,

A B C

D E F

G H I

Fig. 3. Quantification of individual behaviors for visiting cells. For the
noncompetitive Rule 1 (blue) and the competitive Rule 2 (orange), symbols
correspond to the experimental results, while solid lines are the predictions of
the model. (A) Probability to find the best cell, of value 99. (B) Probability to find
one of the four cells whose values are 86 (×2), 85, or 84. (C) Probability to find
one of the four cells whose values are 72 (×2) or 71 (×2). The black dashed and
dotted lines correspond to the expected probabilities of two different visiting
strategies: i) cells chosen randomly (full random search, dashed lines), and
ii) cells chosen randomly among those that have not been already visited
(sequential random search, dotted lines). (D–F ) V1(t), V2(t), and V3(t) are,
respectively, the value of the first-best cell, second-best cell, and third-best
cell visited by the participants, as a function of the round t. (G–I) Probability
B1(t), B2(t), B3(t) to revisit the first-best cell, the second-best cell, and the
third-best cell of the previous round, as a function of the round t > 1.

their average values are higher in Rule 2. Note that this is not in
contradiction with the results shown in Fig. 3 A–C. As a matter
of fact, in Rule 1, individuals have no incentive to revisit cells
with high values, so they continue exploring the table even if they
have already found those cells. As already mentioned, in Rule 2,
individuals have a clear incentive to revisit cells with high values
that they can remember and thus to explore the table less, so
that they ultimately discover the cells with the highest values less
often.

To confirm this interpretation, we quantify the way individuals
revisit cells by defining, for t > 1, B1(t), B2(t), and B3(t) as
the probability of revisiting at round t the cells with the first-,
second-, and third-best values of the previous round (t − 1).
Fig. 3 G–I show that individuals tend to revisit the cells with the
best values, and more so as the value of the visited cells increases
over time. In the final round of Rule 2, individuals revisit their
first-, second-, and third-best cells of the previous round with
respective probabilities 93%, 87%, and 66%. In addition, these
observables confirm that individuals explore the table more in
Rule 1 than in Rule 2: At any round t ≥ 5, the values of B1(t),
B2(t), and B3(t) in Rule 1 are typically less than one-third of the
value in Rule 2.

Altogether, these results illustrate the strong impact of a
competitive condition on the way individuals explore the table
and select the cells they visit at each round.
Rating the visited cells. SI Appendix, Fig. S4 shows the average
fraction of stars �(v) that has been used to rate cells with value
v at the end of the experiment. �(v) increases with v, showing
that, on average, individuals give higher ratings to cells having
high values and also revisit them more often. The experimental
data can be fitted to the following functional form:

�",�(v) = "
1
N

+ (1− ")
v�∑

w Nww�
, [1]

where " ∈ [0, 1] and � are two parameters, N = 225 is the total
number of cells in a table, and Nv is the number of cells with
value v, such that

∑
v Nv�",�(v) = 1. Note that the first term

"/N quantifies the fraction of stars uniformly deposited in the
cells, while the second term involving � accounts for the fact that
high-value cells should attract more stars.

SI Appendix, Fig. S5 shows the average number of stars used
to rate a cell as a function of its value v. In Rule 1, the average
number of stars increases almost linearly with v. On average,
individuals give 1 star to the cells with low values and 4.3 stars
to the ones with very high values. In Rule 2, the situation is
quite different, individuals give 2.5 stars to low-value cells, and
then the average rating decreases to reach a plateau at about 1.5
stars for values higher than v = 25. Thus, a cell will receive
similar ratings regardless of its value between 35 and 99. This
phenomenon suggests that in Rule 2, many participants adopt a
noncooperative/deceptive rating strategy, which effectively makes
the information conveyed by the digital trace less discriminating.
Overall, these results show that individuals give a much fairer
rating to the cells they visit in Rule 1, as the examination of the
fidelity has previously revealed.
Behavioral profiles of individuals. SI Appendix, Figs. S6 and S7
show the average number of stars used to rate a cell as a function
of its value v, for each participant, in Rule 1 and Rule 2,
leading to three emerging rating patterns. Some individuals
rate cells somewhat proportionally to their value, some rate
cells independently of their value, and some others give ratings
somewhat oppositely proportional to the cell values.
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Fig. 4. Behavioral profiles of individuals. (Bottom-left) Scatter plot of the
values of the two parameters u0 and u1 of the linear function, u0 +u1×5v/99,
used to fit each participant’s ratings as a function of the value of the visited
cells. In the noncompetitive Rule 1, individuals are represented by circles,
and in the competitive Rule 2, individuals are represented by squares. The
color of the symbols corresponds to the behavioral profile of the individuals:
collaborator (green), neutral (brown), and defector (red). The two horizontal
lines at udef-neu = −0.5 and uneu-col = 0.5 are the delimitations between the
profiles. (Top-left) Histogram of the values of u0. (Bottom-right) Histogram of
the values of u1. (Top-right) The table gives the percentage of individuals for
each of the behavioral profiles. See also SI Appendix, Fig. S8 A (for Rule 1 only)
and B (for Rule 2 only).

To quantify and classify these three behavioral profiles, we fit
the average rating of each individual with a linear function of the
cell value v, u0 + u1 × 5v/99, where u0 is the intercept and u1
is the slope of the line. u0 = 0 and u1 = 1 would correspond to
a strict linear rating of cells of value 0 to 99, with 0 to 5 stars.
Fig. 4 shows the distribution of u0 and u1 for all individuals. We
identify three classes of behavioral profiles associated with two
thresholds at udef-neu = −0.5 and uneu-col = 0.5 corresponding
to the two minima found in the distribution of u1. Note that the
two thresholds for these three classes are close to the thresholds
found using Ward’s clustering method on the slope parameter u1:

• The ratings of individuals with u1 ≥ uneu-col increase with
the cell values, i.e., they rate cells whose values are the lowest
(respectively whose values are the highest) with a small number
of stars (respectively a large number of stars; see Fig. 5A).
Hereafter, we will dub these individuals as collaborators, since
their rating strategy helps the other members of their group to
identify the best cells (84% in Rule 1 and 13% in Rule 2).

• Individuals with udef-neu ≤ u1 < uneu-col rate cells with almost
the same number of stars (on average, three stars in Rule 1, and
1.5 stars in Rule 2) regardless of their values (Fig. 5B). Since
the ratings of these individuals do not provide any distinctive
information to the other group members, we will dub them as
neutrals (13% in Rule 1 and 49% in Rule 2). Note that these
neutral individuals do not form a homogeneous group. Indeed,
some of them with u0 close to 0 always give zero or a very few
stars whatever the cell value, hence essentially not participating
in the rating and the marking of the cells. Some other neutrals

with u0 close to five always give a large number of stars or even
five stars, thus marking all the cells they visit, while others do
not have any consistent logic in the way they rate cells. This
explains the wide range of intercepts u0 ∈ [0, 5] observed for
neutrals in Fig. 4. Despite not giving distinctive ratings, most
neutrals effectively help the other members of their group to
identify the best cells, since they often revisit these cells, and
hence make them darker. We also address this point in the
section below about optimized agents and in section B.2 of
SI Appendix, Supplementary Text.

• Individuals with u1 < udef-neu rate the cells in the opposite way
to collaborators, resulting in deceptive ratings. Indeed, they
attribute a small number of stars (respectively a large number
of stars) to the cells whose values are the highest (respectively
whose values are the lowest; see Fig. 5C ). We will call these
individuals defectors (3% in Rule 1 and 38% in Rule 2),
since we interpret that the strong traces left on cells with very
low values are meant to mislead other group members and
prevent them from finding the best cells, especially in Rule 2.
In addition, they also decide not to share the position of the
best cells they have discovered, by giving them low ratings, and
hence not marking them on the table.

Fig. 5 A, D, and G show that collaborators mostly rate cells
whose values are less than 20 with 1 star, while the cells whose
values are greater than 80 are rated with 5 stars. By contrast, Fig. 5
B, E, and H show that for the neutral individuals, the probability

A B C

D

G H I

FE

Fig. 5. Rating strategies for the three behavioral profiles. (A–C) Mean
number of stars used to rate cells as a function of the cell’s value v for
(A) collaborators, (B) neutrals, and (C) defectors in the noncompetitive Rule 1
(blue) and the competitive Rule 2 (orange). (D–I) Probability of rating a cell with
0 stars (P0(v); magenta), 1 to 4 stars (P1234(v); violet) and 5 stars (P5(v); green)
as a function of its value v , for the collaborators, neutrals, and defectors, and
for the two rules. The probabilities of rating a cell of value v with 1 to 4 stars
have been averaged in P1234(v). The symbols are the experimental data, and
the solid lines are the predictions of the model.
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of rating a cell with a given number of stars does not depend on
the cell value. Finally, Fig. 5 C, F, and I show that the defectors’
distribution of ratings presents an inverse pattern compared to
that of the collaborators. Defectors poorly rate cells with high
values, hence hiding them from the other members of their
group. Conversely, they rate cells having low values with a high
number of stars, hence misleading others. Ultimately, defectors
have access to more information than the other group members.
Indeed, the defectors benefit from collaborators who give high
ratings to cells having high values. Simultaneously, defectors
strategically withhold their knowledge regarding the best cells
that they have discovered, by refraining from marking such cells.
Thanks to this asymmetric information (33), adopting a defecting
behavior can be beneficial in a competitive environment. Indeed,
defectors have a higher probability of having the highest score in
their group (SI Appendix, Fig. S9). However, in the absence
of competition, there is no benefit in deception and one
should expect fewer defectors. This is what we observe in our
experiments, where Fig. 4 (Inset table) shows that almost every
participant adopts a cooperative behavior in Rule 1, while there
is a large fraction of defectors in Rule 2.

Note that the subjects would participate in two experimental
runs playing alone before participating in 10 runs with the 4
other members of their group in Rule 1 or Rule 2 (SI Appendix,
Supplementary Text). As expected, when playing alone, the
participants behave as collaborators (with themselves), also
showing that the participants understood well the principle of
the experiment. This was confirmed by asking them to fill an
anonymous questionnaire at the end of the session.

Model. We now introduce a stochastic agent-based model to
quantitatively identify the strategies for visiting and rating cells
and to understand their respective effects on individual and
collective performance. In the model, we simulate groups of
five agents playing a sequence of 20 consecutive rounds (three
visited and rated cells per round), exactly following the actual
experimental procedure. The model, described in detail in
Materials and Methods, consists of two steps that characterize
the agents’ visit and rating strategies.

The first step accounts for the visit strategy, i.e., which
three cells an agent decides to visit in each round. This strategy
allows for a variety of behaviors observed in the experiment:

• revisiting the first-, second-, and/or third-best cells already
visited in the previous round, depending on their value (private
memory; see Fig. 3 G–I );

• exploring a marked or unmarked cell (collective memory; see SI
Appendix, Fig. S4) according to its cumulative fraction of stars
represented by the color of the cell in the actual experiment.

The visit strategy is the same for all agents, regardless of their
behavioral profile (cooperator, neutral, or defector), as found
experimentally, but is allowed to differ for the two conditions,
Rule 1 and Rule 2.

The second step of the model addresses the rating strategy,
i.e., the number of stars an agent uses to rate a visited cell as a
function of its value. In the model, the rating strategy of agents
depends on their behavioral profile (Fig. 5 D–I ) and is different
for the two rules.
Model predictions. We consider groups of five agents, hereafter
called MIMIC (Movies S1B and S2B), reproducing the behaviors
of human collaborators, neutrals, and defectors. Their behavioral
profiles are drawn according to the corresponding fraction

observed in the experiment (Inset table of Fig. 4). The parameters
for the rating strategies of collaborators, neutrals, and defectors
have been estimated by fitting the probability to rate a cell with
0 or 5 stars (see Eqs. 5 and 6 in Materials and Methods) to the
experimental data (see lines in Fig. 5 D–I, and SI Appendix,
Table S1). As for the parameters for the visit strategy, they have
been estimated by minimizing the error between the experimental
and the model results for a set of observables, using a Monte Carlo
method (SI Appendix, Table S2). For all graphs, we ran 1,000,000
simulations, so that the error bars in our simulation results are
negligible on the scale of the presented graphs.

Fig. 2 shows that simulations of the model with MIMIC
agents quantitatively reproduce the performance of individuals
and groups and the observables used to characterize the dynamics
of collective exploration and ratings in both rules, as measured
in the experiment. The model also quantitatively reproduces the
dynamics of the average value of the first-best, second-best, and
third-best cells visited by individuals during the different rounds
(Fig. 3 D–F ), along with the probability to revisit each of these
three best cells at the next turn (Fig. 3 G–I ). In addition, the
model reproduces fairly the fraction of collaborators, neutrals, or
defectors according to their rank at the end of the experiment
and the negative impact of the number of defectors on collective
performance (SI Appendix, Fig. S9). The model also predicts
with great accuracy the nontrivial results of Fig. 3 A–C and
SI Appendix, Fig. S3 that were commented above.

These results suggest that the behavioral mechanisms imple-
mented in the model constitute an excellent representation of
the processes by which individuals leave and use the traces to
guide their choice and how these processes are modulated in the
presence of competition between individuals.

Finally, in SI Appendix, Supplementary Text, we also explore
the model predictions for larger group sizes, larger tables, longer
durations, and different types of visit and rating strategies.
Optimization of agents’ performance according to specific objec-
tives. We have also exploited our model to find agents that are
optimized in different situations. To do this, we have used a
Monte Carlo method to obtain all the parameters of the model
that characterize the corresponding visit and rating strategies.

We first consider a situation in which we wish to maximize
the score S (as defined in Rule 2) of five identical agents (Opt-
1 agents) in the same group and exploiting the same strategy
(SI Appendix, Figs. S15 and S19A and Tables S1G and S2).
The inspection of the Opt-1 agents’ resulting parameters and
SI Appendix, Fig. S15 show that they essentially only rate cells
that have very high values, which they revisit at almost every
round so that there is almost no exploration. These Opt-1 agents
are strong collaborators, and their average score (S/Smax = 67 %)
is markedly higher than the score of the human subjects in
Rule 2 (S/Smax = 40 %). Note that, since the 5 Opt-1 agents are
identical, they also maximize the total score of the group. This
suggests that a situation where groups would compete (instead
of individuals; intergroup instead of intragroup competition)
should lead to the emergence of a collaborative behavior within
the groups, a situation that we plan to explore experimentally in
a future work.

We then consider a situation in which we maximize the score
of one agent competing with 4 MIMIC agents (SI Appendix,
Figs. S16 and S19B and Tables S1H and S2). This scenario
represents a more realistic situation where an individual seeks
to maximize their score while competing against four other
typical individuals. In this condition, the behavior of this
optimized agent (Opt-2) is markedly different from that of
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Opt-1 agents, since the presence of MIMIC agents behaving
as neutrals and defectors forces the Opt-2 agent to adapt its
visit and rating strategy to cope with indiscriminate or even
false social information. Interestingly, the optimization process
leads to a neutral agent assigning 0 star to every visited cell,
and hence not participating at all in the rating process. Note
that, as already mentioned in the description of neutral agents
above (and in section B.2 of SI Appendix, Supplementary Text),
a neutral agent assigning a nonzero number of stars to visited
cells would effectively help the other members of its group to
identify the best cells, since it would often revisit these cells. The
average score of the Opt-2 agents is S/Smax = 43 %, which is
only slightly better than the average score of human subjects or
MIMIC agents.

However, in our experiment, to obtain the maximum mon-
etary reward, individuals were not strictly required to maximize
their score but rather had to optimize their ranking among the
10 individuals in the two groups of five participants. In this
condition, the optimized Opt-3 agent competing against 4
(in its group) plus 5 (in the other group) MIMIC agents
behaves as a defector (SI Appendix, Figs. S17 and S19C and
Tables S1I and S2). On average, the Opt-3 agent obtains a rank
of 4.57 (compared to a mean rank of 5.5) when ranked among
the 10 agents of the two groups and a rank of 2.50 within its own
group (mean rank equal to 3). It is remarkable that the model
predicts that deception is an emerging behavior in the conditions
of our experiment.

Finally, it is interesting to consider the visit and rating strategies
maximizing the fidelity of the distribution of ratings to the
distribution of cell values in the final round, F(P(t = 20),V)
(SI Appendix, Fig. S18 and Tables S1 and S2). If the number
of rounds were infinite, the optimal strategy for these agents
(Opt-4) would be to explore the table randomly and to rate
cells proportionally to their value on a full scale of 0 to 5 stars
(corresponding to u0 = 0 and u1 = 1 in Fig. 4). By using
this strategy, the agents achieve a fidelity of 0.76 at round 20
(compared to 0.4 in Fig. 2L), and the fidelity would ultimately
converge to 1 in the limit of an infinite number of rounds.
Clearly, these Opt-4 agents achieve a very mediocre mean score
of S/Smax = 11 % compared to that of the previous optimized
agents, and even compared to MIMIC agents reproducing the
experimental results, and to the human participants. It is worth
noting that there could exist a better strategy to maximize the
fidelity at round t = 20, specifically tailored for the finite
20-round setting used in the actual experiment.

Discussion

The ability to exploit the traces left in the environment by
the action of organisms is one of the simplest and oldest
mechanisms used to coordinate collective behaviors in biological
systems (34–36). In humans, over the past thirty years, the
massive development of the Internet, together with applications
that extensively use digital traces left voluntarily or not by their
users, has reinforced the need to understand how these traces
influence individual and collective behaviors (25, 37–39).

In this work, we have measured and modeled the way groups
of individuals leave and use digital traces in an information
search task implementing a five-star rating system similar to
the ones used by many online marketplaces and platforms such
as Amazon, TripAdvisor, or eBay, in which users can evaluate
products, services, or sellers. Although we certainly do not claim
that our experimental setup captures all the processes at play in

these real-life situations, it shares with them an exploration of the
available options (cells in our experiment; products for an online
store) greatly influenced by their current ratings, and a rating of
the selected options by the participants, allowing the ratings to
evolve dynamically. However, real rating systems usually provide
the users with not only the mean rating of an available option
but also the number of ratings for this option, which allows them
to modulate their confidence in the different ratings.

Our experiment considered two different rules, with Rule 2
implementing a monetary incentive for participants to perform
well, resulting in an explicit competition, absent in Rule 1.

Our experimental results show that groups of individuals can
use colored traces resulting from their ratings to coordinate their
search and collectively find the cells with the highest values
in a table of hidden numbers. These traces constitute a form
of long-term collective memory of the past actions performed
by the group (21, 40). Combined with the individual short-
term memory of the value of the cells already visited, these
traces determine the choice of the cells ultimately visited by the
participants.

However, our results have also revealed profound disparities
in the way individuals use social information resulting from
these colored traces to guide them in their tasks and also in the
way they choose to deliver information to other group members
through their ratings. We have identified three behavioral profiles
(collaborators, defectors, and neutrals) that essentially account for
the way in which individuals rate cells. Collaborators cooperate
by leaving a trace whose intensity positively correlates with the
hidden value of the cells, while defectors adopt an opposite
behavior. Neutral individuals constitute a sizable fraction of
the group members (13% in Rule 1 and 49% in Rule 2) and
their ratings are essentially uncorrelated with the actual value
of the cells. Yet, the marks that they leave, even if they do not
directly inform about the value of the cells, nevertheless induce
a cooperative behavior, since neutrals often revisit the high-value
cells in a way statistically indistinguishable from the collaborators
and defectors.

The information contained in the traces can thus be manip-
ulated by individuals depending on the context, competitive
or not, in which the task is performed. Therefore, one may
expect that when a situation becomes competitive, individuals
should pay less attention to the socially generated traces since the
reliability of the information contained in the trace decreases.
Previous works in social decision-making have indeed shown
that there exists a causal link between mistrust and a decrease
in information sharing and that the fear of being exploited
can be a reason for group members to withhold accurate
information (41, 42). This clearly occurs in Rule 2, where 87% of
individuals provide indiscriminate (neutrals) or false (defectors)
information, whereas 84 % of individuals (collaborators) provide
reliable information in Rule 1.

Despite participants achieving higher scores in the competitive
Rule 2 than in Rule 1, by exploring less and revisiting the best
cells more, the fidelity of the cumulative trace resulting from their
ratings is more faithful to the actual distribution of cell values in
Rule 1 than in Rule 2. In other words, there is a better relation
(more faithful) between the final rating of a cell and its true value
in Rule 1 than in Rule 2, although this relation that we measured
remains nonlinear.

We used these experimental observations to build and calibrate
a model that quantitatively reproduces the dynamics of collective
exploration and ratings, as well as the individual and collec-
tive performances observed in both experimental conditions.
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In particular, this agreement between the model and the ex-
periment is quantified by exploiting a series of subtle observables:
PDF of the score, fidelity, inverse participation ratio, probability
of revisiting cells depending on their values, etc. Note that an
important added value of our model is to offer (via the analysis
of its parameters) a direct and quantitative interpretation of
the visit and rating strategies for the three observed behavioral
profiles of human participants and also for different types of
optimized agents. The analysis of individual behaviors combined
with the simulations of the computational model shows that
competition reinforces the weight of private information (i.e.,
the individual’s memory of the cells already visited) compared
to social information (i.e., the collective memory of the group
shown on the shared colored table) in the choice of cells that are
visited.

The analysis of the model shows that a cooperative effect
induced by the trace emerges as soon as there exists a minimal
level of marking on cells and that the fidelity of the ratings
increases with cooperation. The model also shows that the trace
induces weak cooperation even in groups of defectors, provided
they rate cells with a large enough number of stars, simply
because they revisit the cells whose values are the highest. In
this case, individual memory plays a major role in the collective
performance of these defectors. Furthermore, the model predicts
that the cooperative effect induced by the traces and the
average performance of individuals increases with group size.
This property results from the stigmergic interactions between
individuals that make it possible to amplify at the group level
the information about the location of cells whose values are
the highest. Similar properties are observed in many species of
ants that use pheromone trail laying to coordinate collective
foraging activities and to find the best food sources in their
environment (43, 44). The model also allowed us to explore
the dynamics of the system in different conditions (number of
agents and their behavioral strategy, size of the table, number
of rounds, etc.) and to investigate the optimal agents’ strategy
depending on diverse specified objectives. Our analysis shows that
the maximal score is obtained for collaborative agents (Opt-1),
suggesting that inner-group collaboration should emerge from
intergroup competition. Interestingly, the model also predicts
that a defector behavior emerges for an agent (Opt-3) aiming at
optimizing its rank among the 10 participants of 2 groups, in the
same conditions as in our experiment.

As our model was deliberately designed to prioritize relative
simplicity, it consequently presents a notable limitation by
not incorporating a possible explicit time dependence in the
parameters that quantify the visit and rating strategies. Indeed,
the perceived importance of a cell with a given color may vary
between the beginning and the end of an experimental run. In
fact, in the model, the time dependence of a subject’s actions only
results from the explicit time dependence of the cell colors and
of their three best-discovered cells. Again, we did not consider,
say, time-dependent visit parameters (" and � parameters), for
the sake of simplicity of the model, but also due to the fact that
identifying the possible time dependence of these parameters
with reasonable statistical accuracy would require a much larger
dataset. Yet, despite the model’s imperfection in reproducing
certain observables, the worst agreement between experimental
and model results typically remains within 2 experimental
standard errors (for instance, see Fig. 2I for Rule 1). Considering
the number and diversity of observables that we have considered
(see figures in the main text and SI Appendix), this level of
agreement can be regarded as very satisfactory, suggesting that the

model grasps the main ingredients of the actual visit and rating
dynamics.

Finally, we would like to strongly emphasize that our ex-
perimental setup coupled to our predictive model is extremely
rich and versatile. Indeed, it can be straightforwardly adapted to
the investigation of many other interesting aspects of stigmergic
processes as well as the respective impacts of intragroup and
intergroup competition on the emergence of cooperation in
human groups. In fact, our web application also permits
the inclusion of bots (for instance, MIMIC or OPT agents)
competing with human subjects in the same group of controllable
size, which offers the possibility to investigate the behavior of a
subject depending on the composition of their group. Moreover,
we have also designed an identical version of our interactive web
application which can be deployed on the Internet, and which
could be used to conduct large-scale experiments. We plan to
explore these different avenues in future works.

Ultimately, understanding and modeling the processes that
govern the influence of social information embedded in digital
traces on individual and collective behavior is a crucial step
to developing personalized decision-making algorithms as well
as artificial collective intelligence systems based on stigmergy
(26, 45, 46).

Materials and Methods

Ethics Statement. The aims and procedures of the experiments were approved
by the Ethics Committee of the Toulouse School of Economics (TSE). All
participants provided written consent for their participation.

Experimental Procedure. We conducted two series of experiments, the first
one in December 2021 to study the competitive condition (Rule 2) and the second
one in December 2022 to study the noncompetitive condition (Rule 1). A total of
175 participants were recruited, of which 75 (40 females, 35 males) participated
in experiments with Rule 1 and 100 (47 females, 53 males) participated in
experiments with Rule 2. Each participant could participate in a maximum of
two different sessions. The participants were mostly students at the University
of Toulouse, with an average age of 22.

All experiments were carried out at the TSE Experimental Laboratory.
After entering the experimental room and before starting the experiment,
the participants signed the consent form; were explained the rules, the
payment conditions, and the anonymity warranty; and were asked to shut
down their mobile phones. The participants would then be seated in randomly
assigned cubicles (anonymously linked to an ID in our database) that prevented
interactions between them (Fig. 1B).

Experiments were conducted using a custom-made interactive web applica-
tion developed in part in collaboration with the company Andil (www.andil.fr).
Participants were presented with the same 15 × 15 table of 225 cells on their
respective computer screen, with each cell associated with a hidden value in the
range 0–99. Examples of such tables were provided during the instruction phase.
The tables used in the experiments were generated by randomly shuffling the
same set of values (SI Appendix, Fig. S1B). Thus, all tables contained the same
set of values, only randomly arranged in the table (SI Appendix, Fig. S1A).

We conducted a total of 10 sessions with Rule 1 and 15 sessions with Rule 2.
At the beginning of each session, each participant performed two consecutive
experiments alone (SI Appendix, Supplementary Text for the analysis of these
experiments). The main goal was to ensure that each participant understood
the use of the web interface and to measure their spontaneous behavior when
the only information available was the digital trace resulting from its own
activity. Then, the participants were randomly divided into two groups of five
and performed 10 successive experiments. During each experiment, the two
groups explored different tables that changed during the different experiments.

Eachexperimentconsistedof20consecutiverounds, inwhicheachparticipant
had to visit and rate three different cells within a recommended time of 20 s per
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round, beyond which a warning would flash on the screen of late participants. A
round would end when all participants in the group had visited and rated 3 cells,
and the color of the cells in the table would be updated according to a palette of
shades of red that translate the fraction of stars allocated to each cell since the
start of the experiment (SI Appendix, Fig. S1C). Participants would then move
on to the next round.

In the noncompetitive condition (Rule 1), each participant had to find the
cells with the highest values in the table, but their actions (visiting and rating
cells) were not translated into a score. In the competitive condition (Rule 2), the
score of each participant would increase at each round by the value of the three
cells they had visited, but it remained independent of the ratings given to these
visited cells. Hence, in Rule 2, the participants’ main task was to discover the
cells with the highest values, while maximizing their score, and ultimately, their
payment at the end of the session. Note that we have introduced a notion of
score in Rule 1, to compare the results in the two rules (Fig. 2 A and B), although,
again, the participants in Rule 1 experiments were never told about any notion
of score.

Accordingly, all participants were paid the same 10 C at the end of a Rule 1
session. In Rule 2, the 10 participants, from the 2 groups of 5, were ultimately
ranked and paid according to their cumulated score at the end of the session.
The participant ranked first was paid 20 C, the second and third were paid 15 C,
and the participants ranked from the 4th to the 10th place were paid 10 C each.

Observables Used to Quantify the Collective Behavior. We define pc(t) as
the fraction of stars received by a cell c at round t. The set of pc(t) for all cells c
forms a vector p(t) of size 225 (vectors are shown in boldface). Another vector of
interest is the vector P(t) of the cumulated fraction of stars Pc(t) that have been
attributed to each cell from the beginning up to round t included. Similarly,q(t)
and Q(t) are vectors whose coordinates qc(t) and Qc(t) represent the fraction
of visits received by each cell at round t and up to round t, respectively.

From the definition of pc(t)and Pc(t), we can define the average value of cells
visited by the participants weighted by their ratings (fraction of stars) at round t,
p(t) =

∑
c pc(t)Vc/vmax1 , where vmax1 = 99 is the highest value of a cell. In

general, we have p(t) ≤ 1, and p(t) = 1 would correspond to all members of
a group only giving a nonzero number of stars to the cell of value 99 at round t.
Similarly, we define the cumulated quantity, P(t) =

∑
c Pc(t)Vc/vmax1 , the

average value of cells visited by the participants weighted by their ratings
(fraction of stars) up to round t. Hence, p(t) and P(t) quantify the instantaneous
and cumulated distribution of stars in relation to the value of the visited cells. In
particular, a high value of P(t) (in particular, at the final round t = 20) indicates
that the participants have concentrated the allocation of stars on high-value cells.
Conversely, a low value of P(t) suggests a degree of deception, with participants
allocating a high fraction of stars to low-value cells, as observed for Rule 2 where
many participants are defectors.

In both rules, participants were explicitly asked to discover cells having high
values. However, in Rule 2, their score would increase by the value of the cells
they visit, thus providing an incentive that affects the way they visit and/or
revisit cells during successive rounds. To quantify this (re)visiting behavior, we
consider the normalized average value of the cells visited at round t, q(t) =∑

c qc(t)Vc × 3/(vmax1 + vmax2 + vmax3), where V is the vector of the cell
values Vc , and vmax1 , vmax2 , vmax3 are, respectively, the first-best, second-best,
and third-best values of the cells in the table. This observable is normalized so
that q(t) = 1 corresponds to the best theoretical performance, i.e., when every
individual would visit the three best cells of the table at round t. Similarly, we
introduce Q(t) that cumulates all visits up to round t and which is defined by the
same expression replacing qc(t) by Qc(t). Note that, in Rule 2, since the score
of the participants is increased by the value of their visited cells, q(t) and Q(t)
directly quantify the instantaneous and cumulated performance of the group.
In Rule 1, the participants had no notion of score, but q(t) and Q(t) allow us to
characterize the dynamics of their visits and to compare it with that for Rule 2.

To quantify the exploration behavior of the table by the participants, we
introduce the inverse participation ratio (IPR) of the probability vectors q(t),
Q(t), p(t), and P(t). For a given probability distribution X = {Xc}, the IPR of
X is defined as IPR(X) = 1/

∑
c X2

c . For the 4 vectors considered here, the
IPR measures the effective number of cells on which the visits or the ratings are
concentrated, at round t or up to round t. Indeed, if a probability vector X is

equally distributed over n cells among N, we have Xc = 1/n on these cells, and
IPR(X) = 1/[n × (1/n)2] = n, showing that the IPR measures the effective
number of cells over which a probability distribution is spread.

We are also interested in the relationship between the hidden values of the
cells in the table and the fraction of visits or ratings that these cells have received
up to round t. This relation is quantified by the fidelity F, which is defined as
F(X, V) =

∑
c
√

XcVc/
∑

c′ Vc′ , where X is Q(t) or P(t). The fidelity F takes
values in the interval [0, 1] and is equal to 1 if and only if the probability vectorX
is proportional to the vector of cell values V, which then corresponds to a perfect
fidelity. Indeed, the fidelity can be seen as the scalar product between the vector

of coordinates
√

Xc (of unit Euclidean norm, since
∑

c′
√

Xc′
2

=
∑

c′ Xc′ = 1)
and the normalized vector proportional to

√
Vc . Hence, the fidelity measures

how well aligned these two vectors are and is, in fact, related to the Hellinger
distance between the two distributions. In the context of a real-life five-star
rating system, a high fidelity of the cumulated ratings P(t) would indicate that
the ratings provide a fair representation of the actual value of the different
options. Of course, in this context, these intrinsic values of the available options
are generally unknown. But our experimental setup provides a simpler context
where this relation between the ratings (or the visits) of the different options
(the cells, in our experiment) and their intrinsic value (the cell values) can be
investigated.

Model. The stochastic agent-based model includes two components: i) the
agents’ strategy for visiting cells and ii) their strategy for rating the visited cells.
Visit strategy. In the first round (t = 1), the agents have no information;
therefore, the selection of the three cells is fully random. For the other rounds
(t > 1), the agents adopt the following strategy. For each cell i = 1, 2, 3 to
visit, they either choose the ith-best cell visited in the previous round, of value
Vi(t−1), with probability PR

i (Vi(t−1)), or explore other cells with probability

1− PR
i (Vi(t − 1)), with:

PR
i (Vi(t − 1)) =


0 if Vi(t − 1) < ai
Vi(t − 1)− ai

99
bi if ai ≤ Vi(t − 1) < ai +

99
bi

1 otherwise

,

[2]
where ai and bi > 0 are parameters. An agent never replays a cell of value
Vi(t−1) < ai and always replays a cell of value Vi(t−1) > ai +99/bi (when
this threshold is less than 99, the maximum value of a cell). Between these
two thresholds, the probability to revisit the ith-best cell linearly interpolates
between 0 and 1. The functional form in Eq. 2 is rich enough to be able to
capture diverse behaviors, while only using two free parameters for each of the
three-best cells, and is, in fact, consistent with indirect measurements of these
probabilities.

When an agent does not visit one of the three cells visited in the previous
round, it explores other cells in the table. This is done by associating to each cell
c a probability PE(c, t) to be selected at round t:

PE(c, t) = "
1
N

+ (1− ")
P�c (t − 1)∑
c′ P�c′(t − 1)

, [3]

where Pc(t− 1) is the fraction of stars deposited in cell c up to time t− 1, and
" ∈]0, 1] and � > 0 are parameters. If the selected cell is one of the 3 cells
visited in the previous round, another one is selected according to Eq.3. In Eq.3,
the parameter" controls the amount of exploration of unmarked cells compared
to the marked ones: The higher the value of ", the more random, the selection,
i.e., independent of the cell color. The exponent � controls the selection of a
cell among the marked ones. A high value for � would result in a preferential
selection of the highly marked cells, while a small value for � would lead to
a more homogeneous selection of a cell among the marked ones. The simple
functional form in Eq. 3 is inspired by the experimental results of SI Appendix,
Fig. S4, which are well fitted by the similar functional form in Eq. 1.

The values of the eight parameters appearing in Eqs. 2 and 3 and
characterizing the visit strategy of MIMIC agents in Rule 1 and Rule 2 are
reported in SI Appendix, Table S2.
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Rating strategy. Looking at the probability of rating a cell with s stars for each
profile (SI Appendix, Fig. S10), one notes that, except for the collaborators in
Rule 1, individuals mostly rate a cell with 0 or 5 stars, and that the other ratings
with 1, 2, 3, or 4 stars are less common and have a comparable probability.
Therefore, in the model, the probabilities of rating a cell with 1 to 4 stars are set
equal and are obtained by imposing the probabilistic normalization condition∑5

s=0 Ps(v) = 1, for each value of v. In other words, for s = 1, 2, 3, 4, we
obtain

Ps(v) = P1234(v) =
1
4
(1− P0(v)− P5(v)). [4]

For s = 0 and s = 5, the probability Ps(v) to rate a cell of value v with s
stars is given by

Ps(v) =


cs + ds tanh

(
v − es

99
fs

)
for collaborators/defectors

c′s + d′s
v

99
for neutrals

, [5]

where cs, ds, es, fs, c′s, and d′s are parameters which must satisfy the property
that, for all values of v, P0(v) + P5(v) ≤ 1.

However, the P1234(v) approximation is not valid for the collaborators in
Rule 1, who use the whole rating scale to rate cells proportionally to their values.
Therefore, for these collaborators, we write for s = 1, 2, 3, 4, 5,

Ps(v) = d′′s exp

(
−

(
v − e′′s

99
f ′′s

)2
)

, [6]

where d′′s , e′′s , and f ′′s are parameters which must satisfy the property that, for
all values of v,

∑5
s=1 Ps(v) ≤ 1. Finally, we set P0(v) = 1−

∑5
s=1 Ps(v).

The functional form of Eqs. 5 and 6 are well adapted to fit the corresponding
probabilities observed in the experiment (Fig. 5 D–I and SI Appendix, Fig. S10A),
while allowing to capture very diverse behaviors. SI Appendix, Table S1 presents
the values of the parameters appearing in the fitting functional forms of Eqs. 5
and 6.

Determination of Model Parameters. For the MIMIC agents, the eight
parameters of the visit strategy have been determined by minimizing the error
between a set of n round-dependent observables, O1(t), . . . , On(t), measured
in the experiment (by averaging them over every experiment for each of the two
considered rules) and the corresponding set of observables, Ô1(t), . . . , Ôn(t),
obtained from extensive simulations of the model (averaging over 1,000,000
numerical experiments for each rule). The error is hence defined by

Δ =

n∑
i=1

∑20
t=1(Ôi(t)− Oi(t))2∑20

t=1 O2
i (t)

. [7]

The set of round-dependent observables considered for the computation of
this errorΔ consists in the following quantities: q(t), Q(t), p(t), P(t), IPR(q(t)),
IPR(Q(t)), IPR(p(t)), IPR(P(t)), F(Q(t), V), F(P(t), V), V1(t), V2(t), V3(t),
B1(t), B2(t), and B3(t). We checked that other sets—in particular, smaller sets—
of observables would lead to very comparable results (in particular, in Figs. 2
and 3), fitting some observables slightly better and some others slightly worse,

and leading to similar results for the functions characterizing the visit strategy
in Eqs. 2 and 3.

To minimize the error in Eq. 7, we have used a Monte Carlo method at zero
temperature. At each Monte Carlo step, a small random change is introduced
in one of the randomly selected parameters. If the error Δ decreases, the new
value of the parameter is accepted; otherwise, the old value of the parameter is
conserved. The minimization procedure ends when the error stops decreasing.
To account for possible multiple local minima of the error, we started the Monte
Carlo simulations from several initial values of the parameters. We kept the
final parameters leading to the smallest error. Note that the final parameters
obtained in different low-error Monte Carlo runs were found to result in similar
functions characterizing the visit strategy in Eqs. 2 and 3.

Finally, to obtain the parameters of the visit and rating strategies of the
optimized agents (Opt-1, Opt-2, Opt-3, Opt-4), we have exploited a similar
zero-temperature Monte Carlo method as described above. However, instead
of minimizing an error, we have maximized the score (Opt-1 and Opt-2) or the
ranking (Opt-3) of the agent, or the fidelity F(P(t = 20), V) in the final round
(Opt-4).

Computation of the Error Bars. Error bars for the experimentally measured
observables correspond to a level of confidence of 68 % and were determined
by exploiting the bootstrap method. Bootstrap is a particular type of Monte Carlo
method that evaluates the properties of statistical parameters from an unknown
probability distribution by repeated random drawings with replacement from
a sample (47). The bootstrap method starts by creating M artificial sets of N
experiments by drawing with replacement N experiments among the N original
ones. This means that some actual experiments can be drawn more than once
in an artificial set, while other experiments may not occur in this set. One
can then compute a given observable on every artificial set and obtain its
distribution, ultimately leading to confidence intervals (CIs). In our case, the
independent experiments are the 10 trials played by a group of 5 individuals.
Therefore, we have N = 20 experiments for Rule 1, and N = 15 experiments
for Rule 2, and we used M = 10,000 artificial sets to generate bootstrap
distributions.

For the numerical simulations of the model, the results correspond to an
average over 1,000,000 runs, so that the error bars are negligible on the scale
of the presented graphs.

Data, Materials, and Software Availability. Code and experimental data
have been deposited in Zenodo (48).
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