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Fish schools are able to display a rich variety of collective states and behav-

ioural responses when they are confronted by threats. However, a school’s

response to perturbations may be different depending on the nature of its

collective state. Here we use a previously developed data-driven fish

school model to investigate how the school responds to perturbations

depending on its different collective states, we measure its susceptibility to

such perturbations, and exploit its relation with the intrinsic fluctuations

in the school. In particular, we study how a single or a small number of per-

turbing individuals whose attraction and alignment parameters are different

from those of the main population affect the long-term behaviour of a

school. We find that the responsiveness of the school to the perturbations

is maximum near the transition region between milling and schooling

states where the school exhibits multistability and regularly shifts between

these two states. It is also in this region that the susceptibility, and hence

the fluctuations, of the polarization order parameter is maximal. We also

find that a significant school’s response to a perturbation only happens

below a certain threshold of the noise to social interactions ratio.
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1. Introduction
Fish schools behave as coherent entities and display complex emergent proper-

ties such as coordinated motion, different ordered collective states and rapid

escape manoeuvres when attacked by predators [1–5]. These group-level prop-

erties provide evolutionary advantages to fish schools and arise through social

interactions by which individuals exchange information and perform specific

behavioural responses such as changing their direction and velocity, or avoid-

ing collision with group members or obstacles in the environment [6–12]. These

interactions facilitate the transfer of information between fish and their ability to

respond quickly to changes in the environment. For instance, when some fish

spot a predator they abruptly change their direction of travel. Their close neigh-

bours react in turn by changing their own velocity so that the information

gradually propagates through the whole group, allowing all individuals to

escape [6]. Experimental and theoretical works have shown that the same inter-

actions can lead a few individuals having salient information, such as

knowledge about the location of a food source or of a migration route, to

guide other group members and bias the resulting direction of travel of the

school [13–15]. In all these situations, a small proportion of individuals

deeply influence the collective behaviour of the whole group. This is a direct

consequence of the asymmetry of behavioural responses that exist between

the perturbing or informed individuals and the other group members.

Indeed, the behaviour of a perturbing or an informed fish is weakly influenced

by the behaviour of its neighbours. While the decisions of the neighbours are

mostly dictated by the behaviour of nearby fish.
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Theoretical investigations have shown that not only the

features of local interactions among individuals but also the

number and position of neighbours to which a fish pays

attention determine the patterns of collective motion that

emerge at the group level [16–19]. For instance, we have

recently shown in a data-driven fish school model that the

relative weights of attraction and alignment interactions

between fish give rise to a small number of specific collective

states [20–22]: a swarming (disordered) state in which fish

aggregate without cohesion, with a low level of polarization

of their velocity; a schooling (ordered) state in which individ-

uals are aligned with each other; a milling (ordered) state in

which individuals constantly rotate around an empty core;

and a winding (ordered) state in which the group exhibits

an elongated phase characterized by a linear crawling

motion. However, according to whether fish pay equal atten-

tion to their surrounding neighbours or focus their attention

only of those neighbours that are ahead of them [22] (i.e.

interactions depend on the neighbour angular position), the

number of collective states that can be reached by a school

is different. Only the swarming and schooling states survive

when the behavioural reactions of fish do not depend on the

angular position of their neighbours, while the full repertoire

of collective states exists when a front/back asymmetry in

fish interaction is introduced. Moreover, the exploration of

the model has shown that in the transition region between

milling and schooling states, the school exhibits multistability

and regularly shifts from schooling to milling for the same

combination of individual parameters, a property that was

also reported in the model of Couzin et al. [18] and in

experimental observations on groups of golden shiners [23].

While the past literature on schooling models has been

devoted to a better understanding of the link between inter-

action rules and collective behaviours, less attention was paid

to the group response and to its sensitivity to external pertur-

bations [16,18–20,22,24–27]. In particular, one may wonder if

a small number of perturbed or informed individuals could

trigger the same response whatever the collective state of

the school.

In the present work, we extensively study a previously

developed data-driven model [21], which has been validated

previously on actual experiments on Khulia mugil and was

able to describe quantitatively several properties: individual tra-

jectories of a single fish in a tank (validating in particular the

noise and friction terms; see the Model section), interaction

between two and 30 fish, diffusion properties, mean distance

between fish, mean fish alignment/polarization versus the vel-

ocity or the number of fish in the tank. In another work [22], the

phase diagram of the model without the tank boundaries (in free

space) was studied as a function of the attraction and alignment

parameters, reproducing several collective states observed in

actual fish schools (see below). The excellent qualitative and

quantitative accuracy of the model in describing real fish schools

in a tank is a good motivation to consider it as a fair description

of fish moving in a free space (in particular, their response to a

perturbation) for which relevant experiments would be much

harder to implement.

The present work hence addresses the response properties
of a fish school in free space, using the model as presented

in [22], and that we will briefly review below for complete-

ness, but also to emphasize the crucial role played by the

anisotropic angular perception of the fish to their environ-

ment. We investigate how a single or a small number of
perturbed individuals affect the long-term behaviour of a

school. In particular, we study how the school responds to

perturbations depending on its different collective states

and introduce their susceptibility to such perturbations. We

relate the fish school response quantified by these suscepti-

bilities to the fluctuations (for instance, of the polarization

order parameter) already existing in the unperturbed fish

school. This deep connection between response to a pertur-

bation and intrinsic fluctuations without perturbation,

although well understood and studied in the context of phys-

ical systems, is less familiar in the present context of fish

schools, but equally applies. It is thus also one of the main

purposes of the present work to illustrate and study qualitat-

ively and quantitatively this general connection. In addition,

we also exploit the fact that fluctuations and hence adequate

susceptibilities are maximum (and would diverge in an infi-

nite systems) at the transition between two (collective)

states separated by a continuous phase transition.

We first analyse school susceptibility in the absence of

any perturbation and its relation to fluctuations and to

the identification of transition lines between the different

collective states. We also explore the influence on group

behaviour of a perturbing fish with an independent set of

attraction and alignment parameters, while keeping the

main population in the high susceptibility region, in order

to determine the perturbations that have the highest impact.

We finally explore the model parameter space to determine

how the relative weighting of attraction and alignment of

fish affects the school’s responsiveness to perturbations.

Finally, we discuss the implications of our work for real

fish schools.
2. Model
The present model was originally proposed by Gautrais et al.
[20,21] to describe the coordination of movements in groups

of K. mugil through the use of stochastic equations of motion

for their angular velocity vi ¼ dfi/dt, while fish move with a

constant speed along their angular direction given by fi. In a

previous work [22], we introduced a non-dimensionalized

version of the model in which we included an angular modu-

lation of the strength of interactions between a fish and its

neighbours according to their angular position, a property

also supported by experiments [20,21], but of negligible con-

sequence for fish in a not too large tank. This angular

modulation breaks the symmetry of interactions between

fish in front and those behind. For completeness, we briefly

recall the main components of the model, where the individ-

ual angular velocity vi evolves according to the following

non-dimensional stochastic differential equation:

advi(t) ¼ �[vi(t)� v�i (t)] dtþ dWi(t), (2:1)

where a can be understood as an angular inertia term, v�i is

the response function resulting from the interaction with

the neighbouring fish (figure 1a) and dWi(t) refers to a

random variable, uncorrelated in time and uniformly distrib-

uted in the interval [21,1] (times
ffiffiffiffiffiffi
dt
p

). As a consequence of

the large number theorem, such a uniformly distributed noise

has exactly the same effect as the usual Gaussian noise

(Wiener process) in the long run and in the limit of a time

step dt! 0, with the benefit of being much faster to

implement numerically.

http://rsif.royalsocietypublishing.org/
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Figure 1. Graphical representation of fish interactions used in the model. (a) dij is the distance of fish j from fish i; fij is the relative orientation of fish j compared
to fish i; uij is the angle between the angular position of fish j with respect to fish i. (b) Illustration of the Voronoi neighbourhood; arrows indicate fish headings.
A focal fish is displayed in red and its Voronoi neighbours in orange. (c) Snapshots of typical configurations for the four distinct states displayed by the model.
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The interaction is described by the normalized linear

superposition of pair interactions between the focal fish and

the first shell of Voronoi neighbours (figure 1b) as follows:

v�i ¼
1

Ni

X

j[Vi

[1þ cos (uij)][b sinfij þ gdij sin uij], (2:2)

where uij is the angular position between the focal fish i and the

neighbour j, Ni refers to the number of neighbouring fish in the

first shell of the Voronoi tessellation Vi. The following terms cor-

respond respectively to the alignment and attraction ‘forces’,

with b and g controlling their intensities. fij¼ fj 2 fi is the

heading angle difference and dij is the non-dimensional distance

between j and the focal fish i. Originally, when investigating fish

interactions, Gautrais et al. [21] considered different kinds of

neighbourhoods to combine fish interactions. It was shown

that besides the Voronoi neighbourhood, other choices were

compatible with the experimental data in a tank, in particular

the interactions between the k (k � 6–8) nearest neighbours,

which is remarkably similar to the average number of neigh-

bours contained in the first shell of the Voronoi tessellation

(kNil ¼ 6, exactly, in two dimensions).

In equation (2.2), the prefactor Aij ¼ 1 þ cos(uij) modu-

lates the amplitude of the interaction between fish i and j,
as a function of the angle of view of the former. It is

larger if j is ahead of i rather than behind and is hence maxi-

mum for uij ¼ 0 (Aij ¼ 2), minimum for uij ¼ p (Aij ¼ 0), while

its angular average is kAijl ¼ 1. This term also introduces a
strong asymmetry between the force exerted by j on i and

the one exerted by i on j, and hence breaks the (Newtonian)

action–reaction principle which is most familiar in the context

of purely physical force, such as gravitation. Apart from the

technical fact that the alignment and attraction forces become

non-conservative (i.e. not deriving from a potential energy),

it has the practical and important consequence of allowing

for the milling and winding phases, both observed in actual

fish schools in the ocean (quasi-free space).

In [22], we have shown that varying the parameters b and g

of the model strongly affects the school’s behaviour, leading to

four distinct collective states (see the complete phase diagram

in [22]): (I) schooling, (II) milling, (III) elongated winding state,

and (IV) swarming, all of which can be visualized in figure 1c.
3. Quantification of collective behaviours and
responses to perturbations

We now proceed to describe the tools used to characterize the

collective states and to measure the susceptibility and

the school’s response to perturbations. We also describe the

numerical details used for the simulations herein.

3.1. Order parameters
The aforementioned states can be quantified by two order

parameters: (i) the polarization order parameter which

http://rsif.royalsocietypublishing.org/
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provides a measure of how aligned the individuals in a

group are

P ¼ 1

N

XN

i¼1

vi

v

�����

�����, (3:1)

where P takes values between 0 (no alignment on average)

and 1 (all fish are aligned); and (ii) the rotational or mill-

ing order parameter which provides a measure of the

milling behaviour. It is the absolute value of the normalized

angular momentum

M ¼ 1

N

XN

i¼1

ri� vi

j ri jv

�����

�����, (3:2)

where j vi j ¼ v ¼ 1 in the non-dimensional version of the

model. M takes values between 0 (no collective rotation)

and 1 (strong collective rotation of the school). The analysis

on the transition line between the schooling and milling

phases [22] shows that it obeys a simple functional form

b ¼ A
ffiffiffi
g
p þ B and that it is independent of the angular inertia

term a from equation (2.1) considering values of equivalent

of constant speeds between 0.4 and 1.2 m s21.
3.2. Susceptibilities and fluctuations
In many physical systems, some physical quantity may be

coupled linearly and influenced by an external ‘field’. For

instance, in a magnetic system, the atomic or electronic spins

are coupled and tend to align along the direction of an external

magnetic field. Similarly, an elastic medium (a spring or a

rubber) can be elongated or compressed by exerting an exter-

nal force. In general, the linear response of such a quantity P
(for instance, the spin/fish polarization—i.e. the average

spin/fish direction) to a small change in the associated external

field h is quantified by introducing the P-susceptibility

P(h) ¼ h!0 xhþ � � � , x ¼ @P
@hjh¼0

: (3:3)

In the present context of the dynamics of fish school, the

change in the order parameter P (or M ) to a small pertur-

bation (of a nature detailed in the two next sections) will

give a first characterization of the response of the system

which will be presented in §§4.2 and 4.3.

Moreover, for a system at equilibrium or in a stationary

state associated with an energy functional (an Hamiltonian),

the fluctuation–dissipation theorem (FDT) [28] states that

there exists a direct relation, in fact an exact equality up to a

constant factor, between the P-susceptibility, as defined

above by means of a small perturbing field, and the (thermal)

fluctuations of P at equilibrium

x ¼ N[kP2l� kPl2] ¼ @P
@hjh¼0

, (3:4)

where N is the number of particles, and the angular brackets

refer to the average over time of the corresponding quantity,

e.g. kPl ¼ limt0!1
1
t0

Pt0

t¼0 P(t). In practice, in numerical simu-

lations, t0 is of course finite and is taken as large as

computation time permits. In addition, the susceptibility

is also averaged over as many different samples/initial

conditions as computationally possible. Note that the neigh-

bouring spins/fish of a given spin/fish exert an effective

magnetic/alignment field on the latter, making the connec-

tion between response and fluctuations very natural. In
addition, the noise in equation (2.1) formally plays exactly

the same role as the thermal noise in physics.

This powerful FDT has several very important impli-

cations, apart from the clear physical insight gained on the

relations between the fluctuations and the response of a

system. For instance, in numerical simulations (molecular

dynamics or Monte Carlo), it is much easier and much more

precise to measure the susceptibility from the fluctuations of

the order parameter P (see the first equality in equation

(3.4)), rather than applying a small field h, waiting for equili-

brium to settle, measuring the (small) perturbation on P and

ultimately trying to extrapolate to h ¼ 0 (see the second quality

in equation (3.3) and the original definition of equation (3.3)).

In the present study of fish schools, we will first measure the

susceptibility via the fluctuations of the system (first equality

in equation (3.4)) and will in particular compare this suscepti-

bility to the change of the order parameter under the addition

of a few perturbing fish to the school (effectively acting as a

small perturbing field).

As already mentioned, the asymmetric forces resulting

from the Aij ¼ 1 þ cos(uij) term breaks the Newtonian

action–reaction principle and forbids the existence of an

underlying Hamiltonian. However, the FDT has been gener-

alized in out of equilibrium situations, including in cases

where the system, although in a stationary state, is not for-

mally described by an energy functional (see [28] for a

review). Hence, the connection between the fluctuations of

the school polarization and the polarization response to a

perturbation made in the present work appears very natural

and will lead to important biological implications.

In the same manner, as we just defined the polarization

susceptibility, we can define the milling susceptibility xm

associated with the milling order parameter

xm ¼ N[kM2l� kMl2]: (3:5)

Again, it should be intimately related to the change of M
under a small perturbation defined hereafter, a relation that

will be illustrated in the Results section and in the electronic

supplementary material figures.

Finally, in the physical context, the susceptibility and hence

fluctuations are known to diverge (at least in the limit of an infi-

nite system N!1) exactly at the critical point between two

phases separated by a continuous (second order) phase tran-

sition involving the considered order parameter. In the

present context of fish schools, we will be naturally interested

in the behaviour of the susceptibility and fluctuations near

transition lines, in particular near the schooling–milling tran-

sition. The maximum of the susceptibility (characterized by

fluctuations or response) as a function of the model parameters

hence provides an alternative identification of the transition

lines which will be illustrated extensively in §4.1 and in the

electronic supplementary material figures.

3.3. Quantifying school response to perturbations
To detect behavioural changes, we compare the average

values of the polarization and milling order parameters for

a given set of alignment and attraction parameters of the

unperturbed case, with the new average value given by the

simulations with one or more perturbing fish. These results

are presented for different combinations of the attraction

and alignment parameters: complete parameter space scans,

cross sections where the attraction parameter is kept fixed,

http://rsif.royalsocietypublishing.org/
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Figure 2. Susceptibility of unperturbed fish school simulations for (a) 100 and (b) 200 fish. The susceptibility is calculated according to equation (3.4) for different
values of the attraction and alignment parameters. Each data point represents an average over 400 simulations with random initial conditions. The white lines
following the peak of susceptibility represents the function that fits the schooling/milling transition line as reported in [22]. The circled numbers indicate the
four different collective states (I) schooling, (II) milling, (III) winding, (IV) swarming and the transition zone between schooling and milling (I – II).
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and lastly, by the set of parameters which describe the

transition between the milling and schooling state.

3.4. Simulations
We investigate the long-term consequences on the resulting

school behaviour of a small number of perturbing fish that

differ from the main population by having a different combi-

nation of attraction and alignment parameters. Henceforth,

we call Np the number of perturbing fish and Nm ¼ N 2 Np

the main population of an N fish school. Accordingly, (gp, bp)

and (gm, bm) are the attraction and alignment parameters,

respectively, of the perturbing fish and the main population.

All simulations were run in an unbounded space with 400

random initial conditions for 1000 non-dimensional time

units, where the first half was discarded to remove transient

states. A simple Euler’s method integration with a time step of

dt ¼ 1.44 � 1023 proved sufficient to avoid numerical impreci-

sions. Simulations results shown in the next sections were

performed with N ¼ 100 or 200, meanwhile the number of per-

turbing fish Np may vary from one to nine depending on the
studied conditions. The electronic supplementary material,

C.1, provides the source code from the algorithms used,

together with all datasets from the figures presented.
4. Results
4.1. Susceptibility of a group of fish without

perturbations
Having defined the susceptibility previously via the order

parameter fluctuations (see equation (3.4)), we have calcu-

lated the polarization susceptibility values for different

combinations of attraction and alignment parameters in a

group of N ¼ Nm ¼ 100 and N ¼ Nm ¼ 200 fish, respectively,

shown in figure 2a,b. One can clearly see that the highest

values of susceptibility correspond perfectly to the fitted tran-

sition line between the schooling and milling regions. This

indicates that the transition region is a good candidate to

test different types of perturbing fish. Together with the sus-

ceptibility, other statistics of the unperturbed simulations

http://rsif.royalsocietypublishing.org/
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were also computed, such as polarization and the milling

order parameters, so that we can use some regions of this

map as a baseline to measure the impact of perturbing fish

on the school’s behaviour.

In §4.3 (see in particular figure 5), and in the supplemen-

tary material (by considering the milling susceptibility xm),

we will indeed find a very strong correlation between the

susceptibility computed from the fluctuations in the unper-

turbed system, and the response properties of the system

under small perturbations.
4.2. Quantification of perturbations
We now proceed to investigate the impact of various combi-

nations of attraction and alignment parameters of a single

perturbing fish on the resulting group behaviour. The main

population is located in the transition region (gm ¼ 14,

bm ¼ 10) while the parameters gp and bp of the perturbing

fish both vary in the interval [0,16] with a 0.4 step, forming

an uniform 41 � 41 grid in the parameters space. Figure 3

shows the resulting difference in the average polarization P.

Note that as the main population is located in the transition

region, the values of the polarization P and milling M par-

ameters fluctuate around 0.5. This means that in the case

where the group changes to an almost perfect schooling

state (P � 1), the maximum difference is 0.5. Figure 3 shows

that this change to a schooling state happens for both low

attraction and low alignment values (gp and bp , 2).
One can easily understand that for low values of gp, cor-

responding to a weak attraction, the perturbing fish will not

remain as close to the group as the others, forcing them to

follow it, and in doing so, increasing the polarization of the

group. For low values of bp, fish can have the same attraction

parameters as the main population, but the weak alignment

disrupts the milling intermittence completely. The six insets

in figure 3 represent the distribution of perturbing fish

locations with respect to the group’s centroid (white circle),

and reoriented according to the average direction movement

of the school (white arrow). Inset 1 shows the unperturbed

case (gm ¼ gp and bm ¼ bp), where we can see that the per-

turbing fish has an equal distribution all around the school.

One can see in insets 2–4 (and in electronic supplementary

material, videos B.1 and B.2) that when there is a low attrac-

tion (gp ¼ 1), the perturbing fish stays ahead of the group

most of the time. This ‘leading’ behaviour in which the

school is attracted by the perturbing fish, but not the oppo-

site, is a consequence of the smaller attraction of the

perturbing fish compared with the main population (gp ,

gm). Higher values of gp combined with a weak alignment

(gp ¼ 7 or 14, and bp ¼ 1) lead the perturbing fish to stay

usually behind the group’s centroid (insets 5 and 6 and elec-

tronic supplementary material, video B.3). It is also important

to highlight that in the latter case the perturbing fish is much

closer to the group’s centroid in comparison to the conditions

shown in the insets 2 through 4. The reason for the perturbing

fish to remain close to and behind the school’s centroid is

http://rsif.royalsocietypublishing.org/
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quite simple. The high attraction ensures that the perturbing

fish remains close to the school, but with low alignment, it is

unable to cope with the directional changes of the other fish.

As a consequence, it remains behind the school.

We also performed the same systematic analysis of the

impact of a perturbing fish on the group’s behaviour when

the main population is in the schooling or the milling state.

Electronic supplementary material, figures A.2 and A.3,

show the results of these simulations. When the main popu-

lation is located in the schooling region (gm ¼ 4, bm ¼ 14), a

perturbing fish causes almost no change to the group’s behav-

iour. When the population is located in the milling region

(gm ¼ 14, bm ¼ 4), one can observe a change from milling

to schooling for low parameter values of the perturbing

fish (gp and bp , 2) and intermittent transition between

schooling and milling appear for low attraction and high align-

ment values (gp , 2 and bp . 10). As explained previously,

these effects in the milling region are only due to a fish

that is not able to remain close to the group, forcing its neigh-

bours to follow him, and in doing so, disrupting the mill, as

shown in figure 3 (insets 2–4). It is worth noting that: (i) the

only observed change in the group’s behaviour resulting

from the presence of a perturbing fish is a transition to school-

ing; (ii) only a perturbing fish with very low attraction values

(gp � 0) is able to disrupt a group engaged in a milling state;

any other behaviour of the perturbing fish has no effective

impact on the group tendency to rotate.
4.3. Group response to perturbations
Considering the results shown in figure 3, we have chosen a con-

figuration of parameters for the perturbing fish (gp ¼ 14 and

bp ¼ 1) which lies in the winding region (inset 6). The choice

is motivated to prevent the perturbing effects to be the simple
consequence of non-gregarious fish (gp � 0), like the situations

depicted in insets 2–4 in figure 3. We now proceed to analyse

the group’s response to this perturbation for different configur-

ations of the main population parameter space. We focus on a

cross section of the parameter space keeping a fixed value of

gm ¼ 10 and varying bm in the interval [0,16] represented by

the vertical purple line in figure 4a. Highlighted in figure 4b
are typical time series of the polarization and milling order par-

ameters in the schooling region (I), the transition region (I–II)

and the milling region (II). One can see that in the transition

region, simulations with the perturbing fish display a change

to a purely schooling behaviour.

We can now investigate how an increasing number of

perturbing fish affect group behaviour. We performed

simulations with Np¼ 1, 3, 5, 7 and 9 perturbing fish (and

Nm¼ 99, 97, 95, 93 and 91, when N¼ 100 fish, and Nm¼ 199,

197, 195, 193 and 191, in simulations with groups of N¼ 200 fish).

Figure 5 shows the resulting difference in the average

polarization induced by the perturbation in comparison to

the unperturbed condition in groups of 100 and 200 fish,

respectively. In both cases, the resulting change in the

group polarization and the susceptibility follow a similar pat-

tern reaching a peak in the transition region. A smaller peak

can also be seen for values of low bm. This peak is related to

the transition from the milling zone to the winding region.

Increasing the number of perturbing fish leads to an

increase in the polarization of the group (linear perturbation

regime) up to a saturation value (3 , Np , 5). Ultimately, it

shows a steady decline with more perturbing fish. This hap-

pens due to the fact that the perturbing fish have a lower

alignment parameter value, meaning that after the initial per-

turbing effect, they will have a negative impact (nonlinear

perturbation regime) on the average polarization of the

school. While 100 and 200 fish simulations show a very

http://rsif.royalsocietypublishing.org/
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Figure 5. Difference in the average polarization (left axis) in groups of 100 (a) and 200 (b) fish, with 1, 3, 5, 7 and 9 (light to dark blue) perturbing fish (gp ¼ 14,
bp ¼ 1), as a function of the alignment parameter of the main population (bm[0,16]), keeping the attraction parameter of the main population to a constant value
(gm ¼ 10). The black line represents the susceptibility values (right axis) for the unperturbed condition. The insets show the maximum difference in average
polarization as a function of the number of perturbing fish.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20141362

8

 on January 29, 2015http://rsif.royalsocietypublishing.org/Downloaded from 
similar pattern of change in group polarization for all quan-

tities of perturbing fish, simulations with 200 fish display a

systematic lower response due to the perturbing fish.

One might note the difference in two orders of magnitude

between the difference in average polarization and suscepti-

bility. This comes from the fact that the susceptibility is

proportional to NP2, while the difference in average polariz-

ation is only proportional to P. Also, our main concern here

is to use the susceptibility as a reference point to which the

group responses are compared.

Having established that the transition zone is the region

of the parameter space in which a fish group displays the

highest responsiveness to perturbations, we have studied

the group’s response throughout this region. As previously

seen [22], the transition between schooling and milling fol-

lows the functional form bm ¼ A
ffiffiffiffiffiffi
gm
p þ B, where A and B

fitted the parameter space data in which the school pre-

sented both polarization and milling parameter values
above 0.8 more than 40% of the time (figure 4). We can sys-

tematically vary the attraction parameter gm within the

range [0,16] and determine the parameter bm estimated by

this procedure. In the following analysis, the parameters

of the single perturbing fish are kept unchanged (gp ¼ 14

and bp ¼ 1).

Figure 6 shows that even for a range of parameters where

the susceptibility has already reached a maximum value, the

difference in average polarization still increases with the

attraction parameter gm before it starts oscillating around

the values shown at gm ¼ 16. This means that while being

in the transition region is a required condition for a group

of fish to exhibit sensitivity to perturbations, a minimum

level of attraction and alignment between fish is required to

significantly alter the group’s response to these perturbations.

This additional requirement is probably due to the fact that

both gm and bm increase while keeping a constant noise,

indicating that the main population only reacts to the
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perturbation when the ratio noise to social interactions is kept

below a certain threshold.
5. Discussion
How interactions between individuals control the sensitivity

to perturbations of the group to which they belong and its

ability to respond to threats is an important issue to under-

stand the evolution of collective behaviours in animal

swarms. The survival of each individual within the group

strongly depends on the capacity of individuals to perform

collective adaptive responses to different conditions. Per-

forming such responses not only requires coordination

mechanisms but also a high responsiveness to perturbations

at the group level, which can be favoured by the presence

of highly correlated fluctuations in the unperturbed state

(illustrating again the deep connection between response

and fluctuation) [29,30].

Here, we have addressed this question through an exten-

sive investigation of the responsiveness of a fish school model

to long-term standardized perturbations in the form of a

single or a small number of fish that display different inter-

actions than the main population in the school. We show

that the school’s response depends not only on the character-

istics of the perturbing fish, but of the collective state of the

school as well. Indeed, in the parameter space defining the

way fish interacts with their neighbours, there is a region

that maximizes the school response to perturbations. This

region is located throughout the transition between schooling

and milling states, where the school exhibits multistability

and regularly shifts between both states, and where

fluctuations are hence maximal.

The perturbing fish consists of agent(s) with intensities of

the attraction and alignment behaviours that differ from the

rest of the group. Borrowing the concept of susceptibility

from magnetic systems and other analyses of collective
behaviour in biological systems [31,32], we analysed its equiv-

alent in our simulations to measure the group’s behavioural

change caused by the perturbing fish. We found that groups

of fish display the highest susceptibility in the transition

region between the schooling and milling states (figure 2). If

one assumes that our fish are indeed in a transition region,

the results presented here could be compared to recent works

[29,32,33] which have shown that animal swarms are in a criti-

cal state to better adapt to various environmental conditions.

Indeed, the evolutionary advantages of social behaviour

in animals can easily be reduced if the organisms fail to

adapt rapidly and/or efficiently to a new challenging situ-

ation, for instance, in case of a predator attack. It has been

argued for some time that a more probable solution for this

problem is for a biological system to stay in a perpetual

state of transition from the most common behaviour avail-

able, close to criticality [29,32–35], so that a minimal effort

on its part is able to push the collective behaviour into the

new and more appropriate one. Despite this, the system

should also be steady/robust enough to ignore certain

perturbations and avoid unnecessary transitions.

Our systematic study of the impact of perturbations in the

parameter space reveals that a group of fish in the transition

zone is highly affected by a perturbing fish with low attrac-

tions and/or alignment values (figure 3). When choosing

which set of parameters to use for the perturbing fish, we

avoided the trivial case where low attraction values coupled

with the Voronoi neighbourhood causes a following behav-

iour. For this reason, we used a set of parameters that

induced the perturbing fish to be located closer to the

group’s centroid. We found that the group responds to this

perturbation by significantly increasing its level of polariz-

ation, shifting from a state in which the group spends half

the time in the schooling and milling states to a new state

where the group is schooling permanently (figures 4 and 5a,b).

We also checked whether the transition region is the only

factor involved in the group’s responsiveness. As shown in

http://rsif.royalsocietypublishing.org/
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figure 6, even in the transition region (maximum suscepti-

bility), at lower values of gm (and low bm), the school does

not show the same responsiveness. The main difference in

this region compared to other transitions points is the value

of noise to social interactions ratio. This is in agreement

with the observed lower responsiveness of the school as the

number of perturbing fish is increased (insets of figure 5a,b).

This can be seen as an unnecessarily large amount of noise,

which cancels the impact of the perturbation and decreases

the noise to social interactions ratio, as if the main population

of the school was located in lower values of the transition.

In this context, it is also interesting to mention the work of

Ioannou et al. [36], who studied the predatory tactics of a fish

towards a virtual school with different attraction and align-

ment parameters. They found that the most frequently

attacked fish (fig. 2 of [36]) have low attraction and/or low

alignment parameters like the most influential perturbing

fish in our model (figure 3). The fact that this parameter

region (low attraction and/or alignment) corresponds to a

vulnerability of the species (in Ioannou’s work) and to a

large capacity to change the behaviour of the whole school,

suggests that when such deviant behaviour is detected it

automatically triggers the other group members to flee

either from the current location and/or from the vulnerable

perturbing fish itself.

Previous works [13,26] had already studied the impact of

perturbations in fish schools, but they focused on punctual or

instantaneous perturbations, while we looked into the long-

term changes that result from the perturbation. These

analyses were also mainly related to changes in the school

trajectory and did not focus on the main behavioural changes

undergone by the school. When studying perturbations, one

can either study how a punctual change immediately affects

the system, and the subsequent recovering of the system to

its original state, or one can investigate what is the minimal

constant perturbation imposed on the system which is able

to completely change its properties.

A similar approach to this continuous perturbation analy-

sis has been presented by Aureli & Porfiri [27], where they

used a self-propelled particle model to study the effect of

an external leader particle. However, Aureli et al. chose a per-

turbing agent which is totally independent of the school’s

reactions. This choice also enabled them to compare their

results with experiments performed with a remote-controlled

robotic fish able to influence a school of giant danios

(Devario aequipinnatus) [37]. Despite these similarities, there

are two main differences between the two models: (i) the

total independence of the perturbing agent, equivalent here

to gp ¼ bp ¼ 0; (ii) the movement of the perturbing agent

itself differs completely from the school. More specifically,
the perturbing agent and the school can have different

speeds. These differences limit the comparisons between

the two approaches. Nevertheless, for the case where the per-

turbing agent has a similar speed to the rest of the particles,

they observed an increase in polarization similar to the one

we have found in figure 3, and electronic supplementary

material, figures A.2 and A.3, for the case gp ¼ bp ¼ 0. Unfor-

tunately, the observed state in their simulations and

experiments of agents/fish milling around the perturbing

agent cannot be reproduced here due to the fact that all fish

have the same speed. Given the model dependence on the

fish distance, in the case where the perturbing fish was

fixed at some point, the main population would be forced

to remain close, either swarming or milling around it,

depending on the attraction parameters gm used.

In order to best preserve the data-driven model developed

by Gautrais et al. [20,21], certain limitations to the analysis

arise. For instance, one can mention the recent work by

Couzin and co-workers [12] which has shown the importance

of speed variation for the fish collective response. However, in

their original work, Gautrais et al. [20] observed that speed

variation was minimal and could be neglected for the con-

sidered species. Another limitation results from the size of

the school, given the dependence on fish distance for their

interactions. This term causes a limitation to the size of the

school as seen in our previous work [22], limiting simulations

around the sizes of 100 and 200 fish presented here.

In conclusion, our work has revealed that the collec-

tive states of a school deeply influence its ability to respond

to external or internal perturbations. By providing a high

responsiveness to perturbations, the transition region

between milling and schooling appears to be a highly desired

state that optimizes the ability of the fish to react collecti-

vely (e.g. to a predator attack), thus increasing the survival

of each individual within the school. Our results call for

further experimental observations on fish schools in order

to measure both their susceptibility and responsiveness

to perturbations.
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