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We introduce a simple mathematical model of regulation of division of labor in insect
societies based on fixed-response thresholds. Individuals with different thresholds
respond differently to task-associated stimuli. Low-threshold individuals become
involved at a lower level of stimulus than high-threshold individuals. We show
that this simple model can account for experimental observations of Wilson (1984),
extend the model to more complicated situations, explore its properties, and study
under what conditions it can account for temporal polyethism.
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1. INTRODUCTION

A key factor contributing to the impressive ecological success of social insects is
their social organization, and particularly their division of labor (Oster and Wilson,
1978; Robinson, 1992). It is widely accepted that dividing tasks among mem-
bers of a colony, so that individuals tend to become specialized in certain roles,
enhances colony efficiency (here, reproductive output), either because workers de-
velop task-specific skills through practice, or because spatial fidelity, whereby indi-
viduals become more and more spatially localized to perform specific tasks, reduces
the need for time- and energy-consuming movements between different locations
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(Wilson, 1976; Oster and Wilson, 1978; Seeley, 1982; Jeanne, 1986; Sendova-
Franks and Franks, 1993). Genotype, physiology, morphology, age, experience,
social and external environments have been shown to influence patterns of task
allocation (Lenoir, 1987; Jeanne, 1991) in such a way that division of labor is not
only efficient (i.e., allows more work to be done for the same energy expense), but
also flexible. A colony can, in many cases, respond to internal needs and external
perturbations in a flexible and robust way. Colony-level flexibility is attained over
short time scales [see, for example, Wilson (1984)] mostly through the workers’
behavioral flexibility. Over longer time scales, the colony may, for example, adjust
caste ratios in response to a threatening environment (Passeraet al., 1996), but this
appears to be relatively uncommon (Wilson and H¨olldobler, 1988).

How are colony-level robustness and individual flexibility connected? In a previ-
ous work (Bonabeauet al., 1996), we have shown that a simple response threshold
model (Wilson, 1985; Robinson, 1987a, 1987b, 1992; Robinson and Page, 1988;
Calabi, 1988; Detrainet al., 1988; Detrain and Pasteels, 1991, 1992; Page and Robin-
son, 1991) can account for the workers’ behavioral flexibility. The model assumes
that workers are able to assess needs through particular stimuli triggering task per-
formance (the nature of these stimuli and how they are perceived are issues not
addressed by the model), and that response thresholds do not vary over time. This
model is able to account for experimental observations by Wilson (1984), who ar-
tificially varied the ratio of majors to minors in several polymorphic ant species
(Pheidole) and observed a dramatic increase in task performance by previously in-
active majors as the ratio exceeded some value; the involvement of majors occurred
within an hour of the removal of the minors. When individuals that are character-
ized by low response thresholds with respect to stimuli related to a given task are
withdrawn (for example, minors), the associated demand increases, as does the in-
tensity of the stimulus, until it eventually reaches the higher characteristic response
thresholds of the remaining individuals that are not initially specialized into that
task (for example, majors); the increase of stimulus intensity beyond threshold has
the effect of stimulating these individuals into performing the task (Calabi, 1988).

Two aspects of division of labor can be discussed: (1) How is information gathered
by workers? (2) How are decisions made on the basis of such information? Although
these two aspects are certainly not unrelated, they should not be confused in the
modeling process. Some models of flexible task allocation are aimed at describing
either one of the two aspects, and make simplifying assumptions about the other.
For example, in the threshold model, it is assumed that each task to be performed
is associated with a demand expressed under the form of a stimulus. The focus of
the model is not the nature of such stimuli, but rather how an individual engages
in task performance, given exposure to the associated stimulus (here, when the
level of the stimulus exceeds the individual’s threshold). Another example is the
foraging-for-work (FFW) model, introduced by Tofts and Franks (1992); Tofts
(1993); Franks and Tofts (1994); Frankset al. (1997), where individuals seek work
and engage in task performance when they encounter a stimulus. How tasks are
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allocated is modeled by FFW, using the basis of perceived stimuli and not that of the
detailed nature of the evaluation of colony needs, which could rely on interactions
among individuals as well as on nest patrolling, or any other relevant mechanism.
The relation of our model to the FFW model will be discussed in detail in Section
5.1.1.

We shall not address the first question in this paper, and assume that each task is
associated with a stimulus or set of stimuli (signals and cues strongly and reliably
correlated with specific labor requirements). The respective intensities of these
various stimuli that individual insects can sense, contain enough information. In-
dividuals can therefore ‘evaluate’ the demand for one particular task when they are
in contact with the associated stimulus. We assume that each insect encounters all
stimuli with some probability within some period of time, and can in principle re-
spond to these stimuli. For simplicity, we shall first neglect the fact that performing
a given task may promote contacts with specific stimuli, and prevent other stimuli
from being encountered, but this aspect will be dealt with in Section 4. Let us
give a simple example: if the task is larval feeding, the associated demand is larval
demand, which is expressed, for instance, through the emission of pheromones.
The nature of task-related stimuli may vary greatly from one task to another, and so
can information sampling techniques, which may involve direct interactions among
workers (trophallaxis, antennation, etc.) (Gordon, 1996; Huang and Robinson,
1992), nest ‘patrolling’ (Lindauer, 1952), or more or less random exposure to task-
related stimuli. Another way of obtaining information is through waiting times,
when a complex task requires the coordination of several task groups. For example,
Seeley (1989) showed that the time it takes for a forager to unload her nectar to
a storer bee depends on the availability of such bees in the unloading area, which
itself depends on whether or not more nectar is needed. Jeanne (1996) showed that
the same type of process is taking place in the regulation of nest construction in the
tropical waspPolybia occidentalis, where three different groups of workers, pulp
foragers, water foragers and builders, are involved and interdependent. The time
taken to unload water or pulp to a builder gives an indication about whether foragers
are needed or not, or if more foragers are needed, while the stimulus that initially
triggers foraging can be the number of waiting builders in the unloading area.

The focus of the present paper is the second question, which can be studied
with the help of the fixed-threshold model (Robinson, 1987a, 1987b, 1992; Calabi,
1988; Bonabeauet al., 1996), where it is assumed that individuals are characterized
by (genetically determined) fixed-response thresholds to the various stimuli. A
mathematical framework is presented for this model, some exact results are given,
and the behavior of the model is explored in detail. The model is also extended to
include spatial ‘fidelity’ or specialization by workers, so that task-associated stimuli
are encountered with differential probabilities. An explicit age dependence of the
probabilities of encountering task-associated stimuli leads to a strong pattern of
age polyethism. If, instead of being explicitly age based, differential probabilities
of encountering the various task-associated stimuli are combined with an inflow
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of newly born individuals emerging in the nest and an outflow of older individuals
driven out of the nest, the model can generate temporal polyethism [in a way similar
to Tofts and Franks (1992) and Tofts (1993)], but in a weaker and more unstable
form. Finally, the influence of genetic diversity on temporal polyethism, colony
efficiency and colony flexibility is studied. In the present context, genetic diversity
is represented by distributions of response thresholds (corresponding, for example,
to patrilines).

2. EXPERIMENTAL EVIDENCE FOR THE THRESHOLD MODEL

The first question that we have to answer is: What is a response threshold?
Let s be the intensity of a stimulus associated with a particular task;s can be a
number of encounters, a chemical concentration, or any quantitative cue sensed
by individuals. A response thresholdθ , expressed in units of stimulus intensity,
is an internal variable that determines the tendency of an individual to respond to
the stimuluss and perform the associated task. More precisely,θ is such that the
probability of response is low fors � θ and high fors � θ . One family of
response functionsTθ (s) that can be parametrized with thresholds that satisfy this
requirement is given by

Tθ (s) = sn

sn + θn
, (1)

wheren > 1 determines the steepness of the threshold. In the rest of the paper
we will be concerned with the casen = 2, but similar results can be obtained with
other values ofn > 1. Figure 1(a) shows several such response curves, withn = 2,
for different values ofθ . The meaning ofθ is clear: fors� θ , the probability of
engaging task performance is close to 0, and fors� θ , this probability is close to
1; ats= θ , this probability is exactly12. Therefore, individuals with a lower value
of θ are likely to respond to a lower level of stimulus. The notion of a threshold is
often associated with a change in concavity in the response curve, as is the case, for
example, for response curves given by equation (1) withn > 1, where the inflection
point is given bys= θ((n−1)/(n+1))1/n. But the definition of a threshold given
above does not require a change in concavity. One example is whenn = 1. Another
important example is when the response function is exponential, rather than given
by equation (1). [Plowright and Plowright (1988) use this type of response function
in their model of the emergence of specialization.] In that case,

Tθ (s) = 1− e−s/θ (2)

Figure 1(b) showsTθ (s) given by equation (2) for different values ofθ . We see,
here again, that the probability of engaging task performance is small fors � θ ,
and is close to 1 fors� θ . Although there is no change in concavity in the curve,
this response function produces behaviors which are comparable to those produced
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Figure 1. (a) Semi-logarithmic plot of threshold response curves (n = 2) with different
thresholds (θ = 1, 5, 10, 20, 50). (b) Exponential response curves with different thresholds
(θ = 0.1, 0.25, 0.5, 1, 5). (c) Semi-logarithmic plot of exponential response curves with
different thresholds (θ = 0.1, 0.25, 0.5, 1, 5).
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by response functions based on equation (1) (see, for example, Fig. 4 below).
Figure 1(c) also shows that a semilogarithmic plot ofTθ (s) given by equation (2)
exhibits a change in concavity, and Fig. 1(c) is actually very similar to Fig. 1(a).
In most of this paper, we make use of equation (1) withn = 2 rather than equation
(2), simply because analytical results are possible for equation (1) withn = 2.
But it is important to emphasize that threshold models encompass exponential
response functions: the important ingredient is the existence of a characteristic
θ . Exponential response functions are particularly important because they may
be encountered quite frequently (although, as discussed below, there are not many
experiments studying response functions in social insects). For example, imagine a
stimulus that consists of a series of encounters with, say, items to process. If, at each
encounter with an item, an individual has a fixed probability of processing the item,
then the probability that the individual will not respond to the firstN encountered
items is given by(1− ρ)N . Therefore, the probabilityP(N) that there will be a
response within theN encounters is given byP(N) = 1−(1−ρ)N = 1−eN ln(1−ρ),
which is exactly equation (2) withs= N andθ = −1/ ln(1−ρ). For example, the
organization of cemeteries in ants provides a good illustration of this process. The
probability of dropping a dead body (or a dead item, i.e., a thorax or an abdomen)
has been studied experimentally by Chr´etien (1996) in the antLasius niger: the
probability that a laden ant drops an item next to anN cluster can be approximated
by P(N) = 1 − (1 − p)N = 1 − eN ln(1−p), for N up to 30, wherep ≈ 0.2
[Fig. 2(a)]. Here, the intensity of the stimulus is the number of encountered dead
bodies, and the associated response is dropping an item. Another situation in which
exponential response functions may be observed is when there are waiting times
involved, although it may not always be the case. Let us assume that Tasks A and B
are causally related in the sense that a worker performing Task A has to wait for a
worker performing Task B to unload nectar or pulp, say, or any kind of material. If
a Task A worker has a fixed probabilityp per unit waiting time of giving up Task A
performance, the probability that this worker will still be waiting aftert time units
is given byP(t) = 1− (1− p)t = 1− et ln(1−p). In conclusion, threshold response
functions, such as the one given by equation (1), or exponential response functions,
such as the one given by equation (2), can be encountered in various situations, and,
as will be shown below, yield similar results.

Viewed from the perspective of response thresholds, castes may correspond to
possible physical differences, but also to innate differences in response thresholds
without any visible physical difference. Note that differences in response thresholds
may either reflect actual differences in behavioral responses, or differences in the
way task-related stimuli are perceived.

Let us further discuss the experimental basis of the model. Only a few experimen-
tal results support the idea of thresholds, but very few experiments have been aimed
at showing the existence of response thresholds in social insects. Such experiments
require controlling (or at least being able to vary and measure) the intensity of the
stimuli workers are responsive to, a task that can be very difficult. Most experi-
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Figure 2. (a) ProbabilityP(N) of dropping a dead body next to anN-cluster as a function of
N (after Chrétien, 1996). FitP(N) = 1−(1− p)N with p = 0.2 is shown. (b) Probabilities
of performing a waggle dance and a tremble dance as a function of in-hive search time for
foragers visiting a rich nectar source (after Seeley, 1992). (c) Duration of reaction to
isopentyl acetate (IPA) as a function of IPA concentration (after Collins and Rothenbuler,
1978). (d) Number of stingers involved in prey retrieval as a function of the number of prey
in the antEctatomma ruidum, for a nest comprised of 130 workers (after Schatz, 1996).
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mental curves show the probability of response of an individual as a function of its
size, or weight, etc., atfixed stimulusintensity. Although these curves can teach a
lot, they cannot prove the existence or lack of response thresholds.

Robinson (1987a, 1992) and Breedet al. (1990) showed the existence of hormon-
ally regulated behavioral response thresholds to alarm pheromones in honeybees
(Apis mellifera). Treatment of young worker honeybees with a juvenile hormone
(JH) analog increases their sensitivity to alarm pheromones, which play a role in nest
defense. The corpora allata glands produce JH, and are known to grow with age.
Robinson (1987a) also showed that JH treatment of bees stimulates their production
of alarm pheromone. He further noted that isolated JH-treated bees do not respond
to presented alarm pheromones, but do respond when in a group. This may be due
to the fact that increased production of alarm pheromones by treated bees allows a
threshold to be reached when several such bees are put together. Robinson and Page
(1988) and Page and Robinson (1991) have shown that honeybee workers belong-
ing to different Patrilines may have different response thresholds. For example,
assume for simplicity that workers of Patriline A engage in nest guarding as soon as
there are less than 20 guards, whereas workers of Patriline B start performing this
task when there are less than 10 workers guarding the hive’s entrance: workers of
Patriline B have a higher response threshold to perform this task. More generally,
in a series of papers, these authors have shown that response thresholds are partly
determined by genes.

We mentioned Seeley’s (1989) work in the previous section. If it takes a forager
too long to unload her nectar to a storer bee, she gives up foraging with a probability
that depends on her search time in the unloading area. She will then start a ‘tremble
dance’ (Seeley, 1992) to recruit storer bees (the tremble dance also inhibits waggle
dancing). If, on the other hand, her in-hive waiting or search time is very small,
she starts recruiting other foragers with a waggle dance. If her in-hive waiting or
search time lies within a given window, she is likely not to dance at all and return to
the food source. If one plots the probability of either waggle or tremble dancing as
a function of search time, a clear threshold function can be observed [Fig. 2(b)]. It
is also interesting to note that search time is correlated with the spatial distribution
of nectar unloadings: nectar foragers have to go deeper into the hive in order to
find an available storer bee when the influx of foragers is high than when it is low.
This means that nectar foragers may use spatial (location of unloading) as well as
temporal (search time) information to make decisions.

Collins and Rothenbuler (1978) performed laboratory experiments onApis mellif-
era to measure the duration of reactions to a particular chemical, isopentyl acetate,
(IPA), the major component of the sting alarm pheromone (Bochet al., 1962). Using
paraffin oil IPA diluted in volume, and reactions were tested for different dilutions.
Figure 2(c) shows the duration of the reaction as a function of IPA concentration.
We can see that the response function is an exponential-like response function.

A series of experiments by Detrainet al. (1988) and Detrain and Pasteels (1991,
1992) clearly indicate the existence of differential response thresholds in the ant
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Pheidole pallidulain at least two activities, foraging and nest defense. The in-
tensity of behavioral stimuli (measured by trail concentration and the number of
tactile invitations in the case of foraging, supplemented by the number of intruders
in the case of defense) required to induce the effective recruitment of majors is
greater than for minors for both tasks, indicating that majors have higher response
thresholds. An interesting discussion of the adaptive significance of these findings
is given by Detrain and Pasteels (1991, 1992). They also hypothesize that JH titers
(Wheeler and Nijhout, 1981) or the volume and number of cells of corpora allata
could affect behavioral thresholds.

Finally, Schatz (1997) presents convincing evidence of response thresholds in
the antEctatomma ruidum. When presented with an increasing number of prey,
specialized ‘stinger ants’ (or killer ants) start to become involved in the retrieval
process (in addition to transporters, to which dead prey are transferred), the number
of such ants being dependent on the number of prey in a characteristic sigmoid-like
manner [Fig. 2(d)]. This suggests that within-caste specialization among hunters
is indeed based on response thresholds.

3. EQUIPROBABLE EXPOSURE TO TASK-ASSOCIATED STIMULI

3.1. One task. Let us assume for the moment that one task only has to be per-
formed, and that this task is associated with a stimulus or demand, the level of which
increases if it is not satisfied (because the task is not performed by enough indi-
viduals, or not performed with enough efficiency). We first consider two types of
workers, Types 1 and 2, or Groups 1 and 2. In what follows, we may sometimes call
workers of Type 1 ‘majors’ and workers of Type 2 ‘minors’ in reference to physical
castes, but Types 1 and 2 workers could as well represent different behavioral or
age castes, or individuals belonging to different patrilines. Majors often (but not
always) are characterized by a lower probability of becoming active than minors.
Let n1 andn2 be the respective numbers of workers of Types 1 and 2 in the colony,
N the total number of workers in the colony(n1+n2 = N), f = n1/N the fraction
of workers of Type 1 in the colony,N1 andN2 the respective numbers of workers of
Types 1 and 2 engaged in task performance, andx1 andx2 the corresponding frac-
tions(x1 = Ni /ni ). The average deterministic equations describing the dynamics
of x1 andx2 are given by:

∂t x1 = Tθ1(s)(1− x1)− px1, (3)

∂t x2 = Tθ2(s)(1− x2)− px2, (4)

whereθi is the response threshold of Typei workers, ands the integrated intensity of
task-associated stimuli. The first term on the rhs of equations (3) and (4) describes
how the(1−xi ) fraction of inactive Typei workers responds to the stimulus intensity



762 E. Bonabeauet al.

or demands, with a threshold functionTθi (s)

Tθi (s) =
s2

s2+ θ2
i

. (5)

We assume that individuals can assess the demand for a particular task when they
are in contact with the associated stimulus. A critical assumption of this section is
that each insect encounters all stimuli with equal probability per time unit, and can
respond to these stimuli. Let us definez = θ2

1/θ
2
2 : here,z > 1, i.e., workers of

Type 1 are less responsive than workers of Type 2 to task-associated stimuli. The
second rhs term in equations (3) and (4) expresses the fact that an active individual
gives up task performance and becomes inactive with probabilityp per unit time
(that we take identical for both types of workers). The average time spent by an
individual in task performance before giving up this task is 1/p. It is assumed that
p is fixed, and independent of any stimulus. Therefore, individuals involved in task
performance spend 1/p time units working even if their work is no longer necessary.
Such a behavior has been reported in several cases [e.g., building behavior; see
Deneubourg and Franks (1995)]. Individuals give up task performance after 1/p,
but may become engaged again immediately if the stimulus is still large. The
dynamics of the demand is described by:

∂t s= δ − α

N
(N1+ N2), (6)

i.e., since(N1+ N2)/N = f x1+ (1− f )x2,

∂t s= δ − α f x1− α(1− f )x2, (7)

whereδ is the (fixed) increase in stimulus intensity per unit time, andα is a scale
factor measuring the efficiency of task performance. Identical efficiencies in task
performance are assumed for Types 1 and 2 individuals. That efficiencies do not
vary significantly is a plausible assumption provided the time scales of experiments
are sufficiently short, whereas learning may take place over longer time scales. The
amount of work performed by active individuals is scaled byN, as can be seen
by equation (6), to reflect the idea that the demand is an increasing function of
N, that we take to be linear here. For example, the brood should be divided by
2 when colony size is divided by 2 [see experiments by Wilson (1984)]. In other
words, colony requirements scale (more or less) linearly with colony size. Under
this assumption, our results should be independent of colony size. In the stationary
state, where all∂ts are equal to 0, one has:

pθ2
1 x1

1− (p+ 1)x1
= pθ2

2 x2

1− (p+ 1)x2
, (8)

x2 = 1

1− f

(
δ

α
− f x1

)
. (9)
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Figure 3. Fraction of active majors given by equation (11) as a function of the proportionf
of majors in the colony, forθ1 = 8, θ2 = 1, α = 3, δ = 1, p = 0.2. Comparison with the
results of Wilson (1984) (scaled so that curves of the model and the experiments lie within
the same range): number of acts of social behavior and self-grooming per major within the
time of experiments inPheidole guilelmimuelleri.

The stationary valuexs
1 of x1 can then be easily found. Let us define for convenience

χ = (z− 1)

(
f + (p+ 1)

δ

α

)
− z (10)

Then,

xs
1 =

χ + (χ2+ 4 f (p+ 1)(z− 1)(δ/α))1/2

2 f (p+ 1)(z− 1)
. (11)

Numerical integration of equations (3) and (4) and Monte Carlo simulations
(Bonabeauet al., 1996) are in very good agreement with this expression ofxs

1.
Moreover, values ofxs

1 obtained in simulations are independent of initial condi-
tions, indicating thatxs

1 given by equation (11) is a global attractor of the dynamics.
Figure 3 shows howxs

1 varies as a function off , for z = 64, p = 0.2, δ = 1, and
α = 3, and are comparable with Wilson’s (1984) results (who measured, among
other things, the number of acts of social behavior and self grooming per major in
Pheidole guilelmimuelleri). When individuals performing a given task are with-
drawn (they have low response thresholds with respect to stimuli related to this
task)—here, Type 1 workers—the associated demand increases until it eventually
reaches the higher characteristic response thresholds of the remaining individuals—
here Type 2 workers—that are not initially specialized into that task. The increase
of stimulus intensity beyond threshold has the effect of stimulating Type 2 work-
ers into performing the task. Figure 4 illustrates the fact that it is possible to find
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appropriate parameters (here,θ1 = 0.1, θ2 = 1, α = 3, δ = 1, p = 0.2) with
an exponential response function(Tθ (s) = 1− e−s/θ ) such that it reproduces the
same results as the threshold response function. As can be seen from equations (10)
and (11), there are only three parameters influencing the shape ofxs

1( f ) : δ/α, z,
and p. Figures 5–7 show how thexs

1( f ) relationship varies with these parameters.
When individuals are very efficient at performing the task (δ/α small), the value
of f above which an important fraction of majors is performing the task is larger
and the crossover becomes smoother; conversely, a decrease in efficiency leads to
an earlier and more abrupt modification of the number of majors engaged in task
performance (Fig. 5:δ = 1, α varying). This result is relatively natural, as more
efficient task performances by individuals which have a low response threshold
prevent task-related stimuli from growing large, and therefore from eliciting task
performances by individuals that have larger response thresholds. The crossover
becomes more abrupt asz increases, and the point at which the crossover is ob-
served decreases; whenz is close to 1, the proportion of majors engaged in task
performance starts from a larger value (Fig. 6). When the probability of giving up
task performance becomes small, the involvement of majors in task performance
becomes less progressive, and starts at a larger value off (Fig. 7). This is due
to the fact that task performers, mostly minors for low values off , spend more
time on average in task performance, so that less majors are required. However,
when majors have to engage in task performance, they must do so more massively
because missing minors were performing a lot of work. Finally, it is important to
note that in Figs 5–7, there is always a fraction of active majors asf comes close
to 0 [this property may be difficult to see directly in equation (11)].

Besides the nine species ofPheidolestudied by Wilson (1984), there are other
examples of flexibility, whereby individuals perform tasks that do not belong to
the normal repertoire of their physical or age caste, that the threshold model can
certainly explain (Calabi, 1988). Wilson (1980, 1983a, 1983b) studied flexibility in
the antsAtta cephalotesandA. sexdens, in which there is a continuum of size classes
rather than simply two physical castes, as is the case inPheidole. He showed that the
experimental removal of a size class stimulates individuals belonging to adjacent
size classes into performing the tasks of the missing size class. Lenoir (1979)
found that young workers of the antTapinoma erraticumtend to be stimulated into
foraging activities when the ratio of old to young workers<1. Calabi (1986) found
that young workers of the antPheidole dentata, when raised in the absence of older
minors, forage significantly earlier than when older minors are present; conversely,
old minors in colonies without young minors perform brood care, a behavior that
is not observed when young minors are present. Carlin and H¨olldobler (1983),
cited in Calabi (1988), found interesting interspecific differences, possibly related
to differences in response thresholds, in mixed-species colonies ofCamponotus
ants. Camponotus pennsylvanicusperforms brood care and works inside the nest
when raised withC. americanusor C. noveboracensis, but works outside the nest
when raised withC. ferrugineus. This suggests, within the context of the threshold
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model, thatC. pennsylvanicushas a lower response threshold to brood care than
C. americanusor C. noveboracensis, but higher thanC. ferrugineus. More studies
would be welcome, however, since other factors could play a role in this unusual
example of interspecific task allocation.

3.2. A note on between-caste aversion.In order to explain the increased involve-
ment of majors in minor-related tasks when the fraction of majors in the colony
increases (Wilson, 1984), Wilson (1985) introduced the notion of between-caste
aversion, a phenomenon that he apparently observed inPheidole pubiventris. He
studied the case of brood care, and noticed that majors pay a greater attention to
the brood when less minors are present, which is due, according to him, to the
fact that majors actively avoid minors while in the vicinity of the immature stages.
He further noticed that majors did not avoid minors in any other part of the nest
(which in passing casts doubt on the generality of between-caste aversion as a basis
for division of labor). Wilson (1985) presented this hypothesis as an alternative to
response thresholds, which had rarely been evidenced (but a good reason for this
situation, is discussed in Section 2). However, all of Wilson’s (1985) observations
can be explained by a threshold model. Moreover, making the assumption that
response thresholds exist does not make any further assumption about the asso-
ciated stimuli: in particular, majors could use contacts with minors orwith other
majorsin the vicinity of the brood as a stimulus to assess indirectly the degree of
satisfaction of the brood. It is hard to determine whether majorsavoidminors, or
respond to a brood-specific chemical (or other) cues carried by minors. Indeed,
Wilson (1985) reports that majors showed the clearest responses after making di-
rect antennal contacts with minors: this suggests that instead of identifying minors,
they may be sensitive to cues carried by minors from the brood area. It is also per-
fectly possible that majors have higher response thresholds to brood stimuli, so that
brood care by minors maintains larval demand below threshold. In summary, the
response-threshold approach explains Wilson’s (1985) observations qualitatively
and quantitatively, and does not raise the same issues as between-caste aversion.
In effect, between-caste aversion does not seem to be an efficient way of dividing
labor among workers (notwithstanding its lack of generality): if larvae are satiated,
less minors will take care of the brood, so that more majors will access the brood
area and take over brood care, which is not necessary; if larvae are hungry, many
minors are present, preventing majors from reaching the brood, where they could
be useful. All these remarks make the threshold hypothesis far more likely.

3.3. Several tasks.Let us now proceed to the case ofm tasks. By analogy
with the previous case, let us defineNi j the number of workers of Typei engaged
in Task j performance,xi j the corresponding fraction(xi j = Ni j /ni ), andθi j the
associated response threshold. Alternatively,xi j can be interpreted as the probability
of finding a worker of Groupi performing Taskj . The average deterministic
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equations describing the dynamics of thexi j s are given by:

∂t xi j = (qi j sj )
2

(qi j sj )2+ θ2
i j

(
1−

m∑
k=1

xik

)
− pxi j , (12)

whereqi j is the probability that workers of Typei encounter stimuli associated
with Task j (∀i,∑m

j=1 qi j = 1), andsj the integrated intensity of Taskj -associated
stimuli. Again, we here assume thatqi j = q = 1/m, i.e., stimuli associated with
all tasks are equally likely to be encountered by all types of workers. Finally, let
us assume for simplicity thatm = 2 andi = 1,2. Results for other cases can
readily be inferred from those obtained with these parameters. The dynamics of the
demandsj associated with Taskj is given by:

∂t sj = δ − α f x1 j − α(1− f )x2 j . (13)

Here again, we assume that efficiency in task performance, measured byα, is
identical for workers of both types. Furthermore,α is the same for all tasks. Let us
now distinguish two cases.

CASE 1. θ11 > θ21 andθ12 > θ22: workers of Type 2 are more responsive to
task-associated stimuli for both tasks. Introducingzj = θ2

1 j /θ
2
2 j , we can study,

without loss of generality, the case where, for example,z1 > z2.
CASE 2. θ11 > θ21 but θ12 < θ22: workers of Type 1 (respectively, Type 2) are

more responsive than workers of Type 2 (respectively, Type 1) to stimuli associated
with Task 1 (respectively, Task 2). We can study the symmetric case, i.e., where
z1z2 = 1.

The stationary state of equation (13) cannot be easily calculated: numerical inte-
gration has been used to find the stationary values ofxi j as a function off . Figures 8
and 9 show thexi j vs. f relationships in Case 1 [xi j vs. f ( j = 1,2), z1 = 64
andz2 = 25] and Case 2 [xi j vs. f (i = 1,2 and j = 1,2), z1 = 64 = 1/z2]
for p = 0.2, δ = 1, andα = 3. In Case 1, when workers of Type 1 have lower
response thresholds to both tasks, we obtain twoxi j vs. f curves that are qualita-
tively similar to those observed on Fig. 3. Thex11 vs. f andx12 vs. f curves are,
however, quantitatively different becausez1 andz2 are different. Wilson (1984)
measured the number of acts per major for social behavior and self grooming in
Pheidole megacephala. There is a reasonably good agreement between Wilson’s
observations and the curves of the model. In Case 2, when a caste is specialized in
one of the two tasks, and the other caste in the other task, behavioral flexibility is
observed on both sides: workers of Type 1 can replace workers of Type 2, and vice
versa (Fig. 9). Since minors cannot always be induced to perform major-specific
tasks (while majors can always be induced to perform tasks usually performed by
minors) [e.g., Wilson (1984)], this example may not apply to the case of physical
castes, but can certainly apply to less rigid castes, or to intracaste behavioral flexi-
bility. One can model such an observation by assuming that minors have very large
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(12) and (13). qi j = 1

2, θ11 = 5, θ12 = 10, θ21 = 1, θ22 = 1, α1 = 1, α2 = 3,
δ1 = δ2 = 1, p1 = p2 = 0.2.

(virtually infinite) response thresholds for stimuli associated with majors’ tasks,
although in principle any finite threshold will elicit task performance once stimulus
intensity becomes large enough. But if minors lack perceptual tools for stimuli
associated with tasks usually performed by majors, we are in the case where, in-
deed, the response threshold is infinite, since differences in response thresholds may
either reflect actual differences in behavioral responses, or differences in the way
task-related stimuli are perceived.

3.4. Succession of tasks.It is possible, with fixed response thresholds, to observe
a simulated colony perform some tasks in succession in situations that are not
uncommon. There are two possible models. Model 1 assumes that individuals all
have identical response thresholds, but these thresholds are different for the various
tasks to be performed, and, moreover, the success rate in task performance also
varies with the task. This model can describe the dynamics of brood sorting in
Leptothoraxants (Franks and Sendova-Franks, 1992) or seed piling in harvester
ants. Model 2 assumes that performing a given task increases the demand for
another task. For example, excavation, by creating a refuse pile just at the entrance
of the nest, generates a need for cleaning (Chr´etien, 1996). Both models will give
the impression that individuals have decided to perform the tasks in sequence.

MODEL 1. Let us assume thatm different types of items have to be processed.
Let Li be the number of workers loaded with item typei , U the number of unloaded
workers,si the number of items that still need to be processed,ri the number of
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items that have been successfully processed, andτi the time it takes to process an
item of Typei (for example, to carry a larva or seed to the appropriate location),
and fi = e−τi /τ , whereτ is a characteristic time, the probability of success of the
task (the longer it takes to carry a larva or seed to the appropriate location, the less
likely the individual is to succeed). The idea behind this model is that, for example,
heavier items or items that are harder to work with will be processed after lighter
or easier items have been processed. Heavier items are naturally associated with a
lower probability of success. The dynamics ofU andLi are given by

∂tU =
m∑

i=1

(
Li

τi
− αi Usi

)
, (14)

∂t Li = αi Usi − Li

τi
(15)

whereαi is a threshold function

αi = pi
s2
i

θ2
i + s2

i

(16)
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weighted by the probabilitypi of finding an item of Typei , that we approximate
simply by

Pi = si
m∑

j=1

sj

(17)

Equation (14) expresses the fact that laden individuals deposit their loads every
τi (either successfully or not) and that unloaded workers pick up items with a
probability that combines the probability of encountering an item of Typei (which
is proportional topi si ) and that of responding to such an item [equation (16)].
Equation (15) also expresses how laden workers become unladen, and vice versa,
but with signs opposite to those of equation (14), as it describes the dynamics of the
number of laden workers. The thresholdθi in equation (16) is such that ifsi � θi ,
few workers will be stimulated to carry an item of Typei , and, in constrast, if
si � θi , workers will be stimulated to process items of Typei . The dynamics ofri

andsi are given by

∂t si =−αi Usi + (1− fi )
Li

τi
, (18)

∂t r i = fi
Li

τi
. (19)

Equation (18) expresses that the number of items that can be processed decreases
when an item is picked up, but increases when a laden worker deposits an item at a
wrong location (unsuccessful deposition), which happens with probability 1− fi .
Equations (14)–(19) have been integrated numerically for three types of items.
Figure 10(a) shows the respective numbers of workers performing Tasks 1, 2 and 3
as a function of time. Figure 10(b) shows the fraction of processed items of Types
1, 2 and 3 as a function of time. Clearly, workers tend to process items of Type 1,
then items of Type 2, and eventually items of Type 3.

MODEL 2. Let us now assume that there arem potential tasks to be performed
by the workers. Letxi be the fraction of workers engaged in performing Taski ,
si be the demand (stimulus intensity) associated with Taski , θi be the threshold
associated with Taski (similar to Model 1),pi be the probability of encountering
stimuli associated with Taski , p be the probability of stopping performing Taski
(the average time spent performing a task before task switching or before becoming
inactive is given by 1/p), andα be the efficiency of task performance, which we
also take to be the rate of stimulus production per unit working time for the next
task. The dynamics ofxi andsi are described by

∂t xi = pi
s2
i

θ2
i + s2

i

(
1−

m∑
k=1

xk

)
− pxi , (20)

∂t si = α(xi−1− xi ) with xi−1 = 0 if i = 1. (21)
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Equation (20) is similar to equation (12), and equation (21) expresses the fact that
performing Taski − 1 increasessi , which in turn decreases when Taski is being
performed. Numerical integration of equations (20) and (21) has been performed
for three tasks (i = 1, 2, 3). Figure 11(a) shows the respective numbers of workers
performing Tasks 1, 2 and 3 as a function of time. Figure 11(b) shows the dynamics
of stimulus intensities associated with Tasks 1, 2 and 3, respectively. It can be
seen that workers first tend to perform Task 1, then Task 2 and finally Task 3. If
performing Task 3 increased the demand associated with Task 1, a cyclical activity
would be observed.

4. EXPOSURE TO TASK-ASSOCIATED STIMULI DEPENDS ON THE

CURRENT TASK

4.1. Introduction. Until now, we have been able to observe a global flexibility
obtained at the colony level with fixed response thresholds. One question that
arises is: Can we also observe specialization with the same model? For example,
as we allow no learning, it seems difficult under the form of a reinforcement of
response thresholds (Deneubourget al., 1987; Plowright and Plowright, 1988;
Theraulazet al., 1991). However, with fixed response thresholds, another type
of specialization is possible in this model if stimulus perception is allowed to vary
as a function of the probability of task performance. Introducing this assumption
will allow us to introduce an additional type of specialization by workers, such as,
for instance, spatial specialization, where workers of a certain type are more likely
to encounter stimuli associated with tasks of a certain kind. For example, in some
species foragers are more likely to respond to alarm signals and start to defend the
colony, although defensive behavior can also be induced in non-foragers [see, for
instance, Jeanneet al. (1992) on the tropical social waspPolybia occidentalis]. We
can imagine that this correlation between foraging and probability of response to
alarm signals is due to the fact that foragers are more easily in contact with potential
sources of danger and alarm signals. More generally, performing a task may either
promote or reduce direct exposure to stimuli associated with other tasks, or may
promote or prevent encounters with workers performing other tasks (antennations,
trophallaxis, etc.). Such encounters can be stimulatory (recruitment) or inhibitory.
Gordon (1996) advocates that encounter rates may be regulated to allow workers
to assess how many workers are performing a task. In the absence of regulation, as
too many encounters with individuals performing a task inhibit task performance
by other individuals, the number of task performers would be fixed regardless of
colony size.

Further support of this idea that exposure to stimuli depends on what task is
being performed comes from experiments showing that tasks are sometimes spa-
tially organized (not only in the absolute sense, but also relative to each other)
(Wilson, 1976; Seeley, 1982; Sendova-Franks and Franks, 1994, 1995a, 1995b;
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Franks and Sendova-Franks, 1992). When this is the case, it is clear that the
probability of being exposed to stimuli (either directly or through worker inter-
actions) associated with Task B when performing Task A depends on the spatial
relationships between both tasks. Interesting quantitative information reported by
Sendova-Franks and Franks (1995a), who have shown the existence of individual-
specific ‘spatial fidelity zones’ (SFZ) in the antLeptothorax unifasciatus, is that
the frequency of brood care by a given worker is directly related to the amount of
overlap between her SFZ and the spatial distribution of the brood: this suggests
that the probability of responding to a particular stimulus depends on the perceived
intensity of that stimulus; stimulus perception is influenced by the individual’s SFZ.

Spatial relationships among tasks is usually thought to be a factor of efficiency,
if workers tend to perform a set of spatially localized tasks, so that mean free paths
between tasks are minimized and tasks are more easily located (Wilson, 1976;
Seeley, 1982). In cases where temporal polyethism has been evidenced, age and
spatial location are often correlated [see, for example, Seeley (1982); Sendova-
Franks and Franks (1995a) did not observe any significant correlation between age
and spatial location]. Roughly speaking, in such cases younger individuals tend to
be located within the nest, close to its centre, whereas older individuals are more
likely to perform tasks outside the nest, such as nest defense or foraging. The
prevailing ultimate explanation for this age-location correlation is West-Eberhard’s
(1981) hypothesis of centrifugal polyethism: younger workers, because they can
reproduce, tend to stay in the nest where they can lay eggs, while older workers are
less likely to be able to reproduce and can therefore perform more dangerous tasks
outside the nest.

The idea that task-associated stimuli are encountered differentially can be gen-
eralized to tasks which are not simply spatially related, but are causally connected
or logically close. For example, in honeybees, foragers are in contact with food
storers, to whom they deliver nectar, which is then stored in the combs by the food-
storer bees (Seeley, 1989). It has been observed that food-storer bees (12–18 days
old) are older than nurses but younger than foragers; food-storer bees then become
foragers, an observation which is consistent with the notion of task connectivity.
Tofts and Franks (1992) and Tofts (1993) often use a one-dimensional array of log-
ically/spatially connected tasks because it is easy to visualize, but more complex
arrays or graphs can also be used as a substrate for their model. In summary, the
set of ‘topological’ relationships among tasks, which can be relatively complicated
as it includes spatial, causal and other links, defines the conditional probabilities of
being exposed to specific stimuli when performing a given task. We will show that,
within the fixed-response threshold model, differential exposure to task-associated
stimuli is sufficient to induce specialization and, under specific conditions, temporal
polyethism.

4.2. Specialization. The simplest and most natural choice is to considerqi j = xi j ,
i.e., the probability of Groupi to perceive stimuli associated with Taskj directly
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depends on the involvement of Groupi in Task j . But then, the null state, where
no worker of Groupi performs Taskj may be a stable attractor of the dynamics
if the intensitysj of the stimuli associated withj is too low (in effect, assuming a
constant stationary levels for sj , a necessary condition for the stationary value of
xi j to be different from 0 iss2 > 4p(p+1)θi j ). If xi j reaches 0, workers of Groupi
will no longer be performing Taskj , no matter how largesj may grow. We would
therefore observe specialization (a specialist of Taskj being defined byxi j close
to 1), but also a complete loss of flexibility in certain cases, when specialization
becomes exclusive. This result may explain in part why minors do not do some of
the majors’ tasks: they do not perceive the corresponding stimuli, not necessarily
for lack of the appropriate sensors, but because they do not encounter the stimuli.
One way of restoring flexibility is to allow workers performing a given Taskk to
encounter stimuli associated with another Taskj , even if they currently have a
probability equal to zero of performing Taskj . Of course, one would still like
to retain the idea that performing Taskj enhances the probability of encountering
stimuli associated with Taskj . If we define

qi j − pexi j + [(1− pe)/(m− 1)]
m∑

k=1,k 6= j

xik (22)

(so that normalization is satisfied), wherepe is the probability of encountering
stimuli associated with Taskj while performing Taskj , and(1− pe)/(m−1) is the
probability of encountering stimuli associated with Taskj while performing any
other task, we obtain the desired property, provided thatpe� (1−pe)/(m−1) > 0.
We assume here thatpe is task-independent, and that the probability of encountering
stimuli associated with Taskj while performing another task is identical for any task
different from j , which are obviously oversimplifications. However, we still have
the main ingredients to generate a colony of flexible specialists. The generalization
of the model toN individuals andm tasks requires a description of how task-
associated demands vary. We generalize equation (6):

∂t sj = δ − α

N

( N∑
i=1

xi j

)
. (23)

Note that here again,sj is scaled byN. Figure 12 shows an example of specializa-
tion (with two tasks), starting with groups of individuals with identical thresholds:
although the thresholds do not vary in time, the probability of task performance
evolves to match task-associated demands [xik (k = Task 1, Task 2) shown for two
Groupsi and j out of 10]. Figure 13 shows the evolution of the demand associated
with Task 1: it oscillates before stabilizing above the individuals’ threshold (θ = 5),
at sj = 8. That the stationary value ofsj lies well aboveθ is not surprising, for
individuals are not stimulated ifsj lies at or below their response thresholds.
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Expression (12) forqi j , neglecting the probability of an individual of Groupi
‘spontaneously’ (i.e., while performing no task in particular) encountering a stim-
ulus associated with Taskj , can lead to another null state: one where there exists a
Groupi characterized byxi j = 0 for all Tasksj , i.e., a completely idle group. This
situation occurs frequently whenp is large, or in other words, when the time spent
performing a task before giving it up is small. Figure 14 shows a typical case, where
Groupi becomes completely inactive with respect to all tasks, while the other group
spends 40% of its time performing each task, the rest of the time being lost in task
switching (remember thatp is large here:p = 0.5). Once, again, this state is an
attractor of the dynamics. The demand associated with Task 1 is shown by Fig. 15,
and can be seen to be divergent; despite this divergence, workers of Groupi do not
become active. It seems necessary, therefore, to introduce the probabilityps (that
we take to be identical for all tasks and groups) of an individual to find a stimulus
even when performing no task. Equation (14) is then transformed into

qi j = (1+ ps)
−1

{
ps+ pexi j + [(1− pe)/(m− 1)]

m∑
k=1,k 6= j

xik

}
. (24)

Expression (22) satisfies the normalization condition of theqi j . As can be seen in
Fig. 16 (p = 0.5, ps = 0.001), the null state for a group is no longer an absorbing
state: Groupi first becomes completely lazy, and then becomes involved in task
performance again, because the demands have increased. This indicates that the
specialization is weak (which permits it to be flexible), in the sense that a decrease in
sj can inducej specialists to perform other tasks or becoming lazy, and an increase
in sj can induce non-j specialists to performj . Figure 17 shows that non-specialists
of a task can become specialists when colony requirements with respect to that task
increase (p = 0.2, ps = 0.0001, att = 75, task performance efficiencyα changes
from 4 to 2). We see that the two groups of workers switch fromx = 0.25 to
x = 0.45 (frequency of Task 1 performance).

4.3. Temporal polyethism. If we now add time to the previous model with spe-
cialization, for example by defining

qi j = qi j (t) = gj (t)(1+ ps)
−1

{
ps+ pexi j +[(1− pe)/(m−1)]

m∑
k=1,k 6= j

xik

}
, (25)

wheret is the age of an individual,gj (t)(1 ≤ gj (t) ≤ 1) is a function that defines
how the probability of encountering stimuli associated with Taskj varies in time,
we can account for temporal polyethism, with specific sets{gj (t)}. Here, we can
include implicitly the outward motion of individuals as they age by (1) assuming
that task-associated stimuli are more likely to be found in specific locations, and (2)
by usinggj (t) to explicitly describe in what general order locations will be visited
and stimuli be encountered. Such a model is certainly less ‘emergent’ than the
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FFW model (Tofts and Franks, 1992; Tofts, 1993), but is also more robust and more
stable, and still flexible.Our model does not assume time-varying thresholds but
does assume an explicit time dependence of the probability of becoming engaged
in performing a task. The functionsgj (t) could represent or include physiological
ageing, although it is not exactly in the spirit of the model. We rather assume that
gj (t)expresses an age-location correlation. For example, it could be physiologically
necessary for newly emerged individuals to stay in the center of the nest for a certain
amount of time, or alternatively, physiology again could stimulate older workers
to exit the nest more often. Robinson (1987a) showed that JH is involved in the
transition from intranidal to extranidal activities in honeybees, and that the onset of
foraging is characterized by a rise in JH titers, but it is still not clear whether this
feature is a cause or an effect of behavior. We have performed simulations with
three tasks, characterized by three functionsgj (t):

gj (t) = e(t−t j /T)2 (26)

wheret j is the time when stimuli associated withj are most likely to be encountered,
andT is the duration of the ‘Taskj period’. From now on, we consider the case
wherem = 3 (m is the number of tasks). Figure 18 shows the three functions
gj (t). We now assume that each Groupi is in fact limited to one individual: a
colony of N individuals is described byN equations similar to equation (12), and
xi j describes the frequency of Taskj performance by an individuali . The lifespan
of an individual is 2T , andt1 = 0, t2 = T andt3 = 2T . There is an inflow ofN/2T
newly born individuals per time unit, so that colony sizeC is stable atN individuals
(in the simulations reported below,T = 50, N = 100):

∂tC = 1

2T
(N − C). (27)

Figure 19 shows the age–xi j relationship for an individual taken at random in the
colony, from t = 5000 tot = 5100. Figure 20 shows the age–xi j relationship
for a snapshot of the whole colony taken att = 5000. The simulation started
with N individuals having identical thresholds(θi j = θ = 5) and an initially
random probability of performing each task{xi j (t = 0) distributed uniformly in
[0,1/m]}. New individuals are generated with the same thresholds but random
initial frequencies of task performance (again, distributed uniformly in[0,1/m]).
We see that there is a strong correlation between age and probability of performing
certain tasks: younger individuals perform mostly Task 1, intermediate individuals
perform mostly Task 2 and older individuals perform mostly Task 3. There is also
a striking similarity between the lifetime evolution of one individual and snapshots
of the colony age–task distribution, except for young individuals, where the random
initial distribution ofxi j induces fluctuations.

Behavioral reversion (Seeley, 1982; Lenoir, 1987; Robinson, 1992) can also be
obtained in the same model if younger individuals are removed. Figures 21 and 22
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show how older individuals increase their probability of performing tasks usually
performed by younger individuals, when the latter are removed. Figure 21 shows
the age–xi j curve of one individual before the removal of young individuals, and
Fig. 22 shows the same curve for another typical individual after the removal of
young individuals (all individuals of age less than 30 time units are removed; the
individual represented in Fig. 22 was 40 time units old when the removal took
place). This simulation can apply, for example, to the case of swarm-founded
colonies in honeybees (Robinson, 1992), where over-aged nurses can be observed
caring for the brood and the queen, as no young individuals are available to perform
that task. The same mechanism can induce younger individuals to perform tasks
usually performed by older individuals if those are removed (as can occur naturally
because of predation, competition, or other factors that tend to increase the death
rate of older workers). Seeley’s (1982) observation that the probability of behavioral
reversion from foraging to nursing in honeybees depends on the amount of time
spent foraging, cannot be explained in a robust way with this model. It would require
the inclusion of a learning or task-fixation process (the probability of behavioral
reversion in the present model depends weakly on the time spent performing the
task, because specialization is weak). Note, however, that because the probability
of reversion indirectly depends onxi j , older individuals strongly involved in Task
3 are less likely to revert to Tasks 2 or 1.

This model can account not only for the maintenance of temporal polyethism, but
also for its genesis: the simulation starts with one individual, andN/T individuals
are added per time unit, until the colony reaches its stationary sizeN. The equations
describing the dynamics of the various demands must also be rewritten as

∂t sj = δ − α

C(t)

( C(t)∑
i=1

xi j

)
(28)

Figures 23 and 24 show two snapshots of the colony, respectively before and after
maturity. We can see how temporal polyethism evolved from an initially loose
pattern to a firm pattern of temporal polyethism (in this simulation, all thresholds
are identical:θi j = θ = 5).

Finally, if one imposes that newly emerged workers remain at the nest for a certain
amount of time,T ′, and if tasks are coupled†, we can obtain a pattern of temporal
polyethism for some values of the parameterswithout resorting to the explicit age
functions gj (t) of equation (26). Figure 25 shows an example whereT ′ = 5 (in the
simulations, workers younger than 5 have theirqi j s fixed: qi 1 = 0.95,q12 = 0.04,
qi 3 = 0.01, and individuals emerge withxi 1 = 0.8,, xi 2 = 0.05, xi 3 = 0.05).

†A worker performing Task 1 has a higher probability of encountering stimuli associated with Tasks
1 or 2 than with Task 3, a worker performing Task 2 has a higher probability of encountering stimuli
associated with Task 2, but equal probabilities of encountering stimuli associated with either Tasks 1
or 3, and a worker performing Task 3 has a high probability of encountering stimuli associated with
Tasks 2 and 3, but is unlikely to be stimulated to perform Task 1



784 E. Bonabeauet al.

0
0

0.1

0.2

0.3

Fr
eq

ue
nc

y 
of

 ta
sk

 p
er

fo
rm

an
ce

0.4

0.5

0.6

10 20 30 40 50

Age

60 70 80 90 100

Task 1
Task 2

Task 3

Figure 20. Snapshot of the whole colony taken att = 5000 for the same simulation as in
Fig. 19.
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Figure 24. Same as Fig. 23, but after the colony has reached its stationary size.

This period of time spent in the nest by newly emerged individuals drastically
lowers the demand for Task 1 and stimulates older workers to perform other tasks,
the demands of which increase. From the snapshot presented by Fig. 25, we
see that workers aged 0–30 perform mostly Task 1, workers aged 30–50 perform
mostly Task 2 and workers aged 50–100 perform mostly Task 3. Notice that this
more-emergent pattern of temporal polyethism can be obtained only for specific
values of the parameters, and does not appear to be robust with respect to parameter
variations. In particular,T ′ has to be sufficiently large, and new individuals have
to be initialized with specific values ofqi j andxi j .

4.4. Genotypic diversity (1): temporal polyethism.We have treated the case of
identical thresholds, but it might be interesting to study the effect of genetic diver-
sity, i.e., of distributions of thresholds. The fact that some individuals have low
thresholds and others high thresholds means that there exist intrinsic specialists of a
given task. Individuals with close genotypic characteristics (for example, belonging
to the same patriline) may have similar response thresholds and are therefore predis-
posed to perform the same tasks. There is now convincing evidence that there is a
genetic component to division of labor in honeybees and ants (Calderone and Page,
1988; Frumhoff and Baker, 1988; Robinson and Page, 1988; Breedet al., 1990;
Page and Robinson, 1991; Stuart and Page, 1991). It is generally believed (Jeanne,
1986) that the existence of specialists in a colony is a favorable trait, underlying
most evolutionary explanations of division of labor: this is due to the fact special-
ists may be more efficient, either because they are better at performing the task, or
because they do not waste time switching tasks. If specialization is a good thing,
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Figure 25. Snapshot of the age–task distribution in a simulated colony att = 10 000.
Workers younger than 5 have theirqi j s fixed: qi 1 = 0.95,qi 2 = 0.04,qi 3 = 0.01, and
individuals emerge withxi 1 = 0.8, xi 2 = 0.05, xi 3 = 0.05. qi j s for older individuals are
given by: qi 1 = 0.97x1 + (0.03/(m− 1))(1.95x2 + 0.05x3); qi 2 = 0.9x2 + (0.1/(m−
1))(1.8x2 + 0.2x3); qi 3 = 0.97x3 + (0.03/(m− 1))(0.05x2 + 1.95x3). All individuals
have identical thresholdsθi j = θ = 5 for all tasks,p = 0.2, ps = 0.0001,α = 4, δ = 1.

and if genotypic variability provides a basis for behavioral differentiation, then, for
example, high levels of polyandry may be favoured, as is the case in honeybees.
The same reasoning applies to polygyny: it is striking that there is a strong negative
correlation between polygyny and physical polymorphism among workers in ants
(Keller, 1995); if genetic diversity, due for example to the presence of workers pro-
duced by different queens, endows the colony with a variety of response thresholds,
and therefore specialization, physical polymorphism may not be necessary.

We study here how genotypic variability influences patterns of temporal poly-
ethism in the context of the fixed-threshold model. Response thresholds constitute
only one possible difference between individuals from different genotypes. Notice
that genetic diversity can induce a bias not only in the pattern of temporal polyethism,
but more fundamentally in the probabilities that individuals perform tasks, leading
to patterns of genetically based specialization.

In a genetically diverse colony, some individuals may have an ‘accelerated devel-
opment’ because they have a lower threshold with respect to tasks that are usually
performed by older individuals, and other individuals may exhibit ‘retarded de-
velopment’, as they are not very responsive to these tasks (Calderone and Page,
1988; Frumhoff and Baker, 1988). According to Calderone and Page (1988, 1991,
1996) genes may have effects on (1) the rate of behavioral ontogeny, and (2) the
probability of task performance independent of the rate of behavioral ontogeny.
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Figure 26. Snapshot of thexi j –age relationship att = 5000 for individuals of Group 1:
θ11 = 1, θ12 = 5 andθ13 = 10.
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Figure 27. Same as Fig. 19 for Group 2:θ21 = 5, θ22 = 1, θ23 = 5.
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Figure 28. Same as Fig. 19 for Group 3:θ31 = 10,θ32 = 5, θ33 = 1.

Our model suggests that the rate of behavioral ontogeny itself may be influenced by
how sensitive individuals are to the various task-sensitive stimuli, provided there is a
‘driving force’ that promotes temporal polyethism, such as the emergent centrifugal
flow observed under certain conditions in the FFW model. Figures 26–28 show the
age–xi j relationship for a snapshot of the colony for three groups of workers char-
acterized by different response thresholds to the various tasks (Group 1: θ11 = 1,
θ12 = 5 andθ13 = 10; Group 2: θ21 = 5, θ22 = 1 andθ23 = 5; Group 3: θ31 = 10,
θ32 = 5 andθ33 = 1). Although all three groups exhibit the same global trend in
temporal polyethism (Task 1 first, then Task 2, and eventually Task 3), they differ
quantitatively in the way this temporal polyethism occurs. Groupj is biased to-
ward Task j , but age modulates this bias.These results indicate that the rate of
behavioral ontogeny can be influenced by response thresholds. Figure 29 shows a
snapshot of the age–task distribution in a simulated colony where all members (in-
cluding newly emerged individuals) have randomly generated thresholds (uniform
distribution in[0,10]). The general structure of temporal polyethism is conserved,
but is highly fluctuating. By contrast, the lifetime evolution of a single worker’s
behavioral profile is smoother, but only loosely follows the expected pattern of tem-
poral polyethism, as it is influenced by its own pattern of response thresholds. For
the individual whose profile is shown on Fig. 30, we haveθ11 = 3, θ12 = 9 and
θ13 = 1. Individuals with different patterns of temporal polyethism can be found,
for example, in honeybees, where different patrilines have different genotypes and
therefore probably different responses with respect to the various tasks.
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Figure 29. Snapshot att = 5000 of the age–task distribution in a simulated colony where all
members, including newly emerged individuals, are characterized by randomly generated
thresholds (uniform distribution in[0,10]).
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4.5. Genotypic diversity (2): modulation of individual response vs collective
modulation. An interesting theoretical question related to genotypic diversity is
whether the collective response of a colony is as efficient when the modulation of
the response results from a distribution of thresholds as to when it results from
individual modulation. Let us illustrate this rather abstract question in the context
of the choice of food sources in ants. Let us assume thatN foragers are exploiting
m food sources. The quality or richness of sourcei is given byri . Trails to the
various food sources are reinforced by pheromone deposited by foragers. At the
exit of the nest, an ant has to choose among all possible trails. We assume that the
choice of a trail to Sourcei is probabilistic: the probability of selecting Traili is
given by (Deneubourget al., 1989; Deneubourg and Goss, 1989)

Pi = (k+ Ci )
2

m∑
j=1

(k+ Cj )
2

, (29)

whereCi is the pheromone concentration on Traili andk is a threshold-like pa-
rameter. We assume for simplicity that pheromone concentration does not decay
over the time scale of the experiment. A forager coming back from Sourcei adds a
quantity Q(i) of pheromone to Traili . This deposition behavior can be modulated
as a function ofri . Such a modulation can be implemented in either one of two
ways (other alternatives will not be considered here).

MODEL 3. The amount of pheromone deposited per individual is a direct function
of ri . For example, it can be given by

Q(i ) = r 2
i

r 2
i + ρ2

, (30)

whereρ is, once again, a deposition threshold. Here, all individuals have the same
threshold, but are able to modulate their own trail as a function of source quality
(resource quality may vary between food sources; also, the quality of a source can
vary as a function of how many foragers are already present at the source, but, for
the sake of simplicity, we do not consider this possibility). This is an example of
individual modulation.

MODEL 4. A forager, j , deposits 1 unit of pheromone ifri > θ j , whereθ j is
an all-or-nothing deposition threshold. Individuals are characterized by different
values ofθ j . In order for this collective modulation to be compared to individual
modulation, the distributionP(θ) of θ in the colony must be such that the fraction of
individuals that deposit pheromone for a source of richnessri be given byr 2

1/(r
2
i +

ρ2). Therefore,

P(θ) = ∂

∂θ

(
θ2

θ2+ ρ2

)
= θρ2

(θ2+ ρ2)2
. (31)
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This is obviously an example of collective modulation, for no individual is capable
of fine tuning the amount of pheromone it deposits as a function of source quality.

Two situations can be tested in order to compare individual and collective mod-
ulation of trail laying (we consider for simplicity the case of two food sources:
m= 2):

QUESTION 1. Two sources of identical quality are offered to the colony
simultaneously at the same distance from the nest. It is known that, in species
that resort exclusively to trail laying and trail following [as modeled, for
example, by equations (29) and (30) or (31)], one of the sources is eventually
far more exploited than the other source (Beckerset al., 1990). How rapidly
is the winning source selected over the other?
QUESTION 2. A single poor-quality source (Source 1) is presented to the
colony, and, after a certain amount of time, a second, better-quality source
(Source 2) is presented to the colony at the same distance from the nest.
When the second source is presented, the colony is actively exploiting the
first source, and a well-marked pheromone trail leads to Source 1. What is
the probability that the colony be able to switch to the better source?

It is clear that differences between the two modes of trail laying will disappear
as N becomes large: in effect, the theoretical distribution given by equation (31)
is better and better approximated asN grows. Figure 31 shows the theoretical
distribution and its simulated approximation for different values ofN. We see
that significant deviations from the theoretical distribution occur forN up to 2000.
Results presented below correspond toN = 200, where deviations are visible, but
the distribution is nevertheless reasonably well approximated.

The answer to the first question is that both Models 3 and 4 yield undistinguishable
behaviors. Lett1 andt2 be the time it takes in Model 3 and Model 4, respectively,
to reach a state where one source attracts 80% of the foragers. Variablest1 and
t2 are random, the values of which depend on particular realizations of the food-
source selection stochastic process. The question one is interested in is whether
t1 is greater thant2 or vice versa. Applying a two-tailed Mann–Whitney U-test
to a set of 100 values oft1 and 100 values oft2 obtained from 200 simulations
with identical food sources presented simultaneously to the colony (and parameters
r1 = r2 = 15,k = 10,ρ = 10, N = 200,C1(t = 0) = C2(t = 0) = 0.2), we find
that P > 0.5, which means that Models 3 and 4 yield similar convergence times.
In other words, individual or collective modulation has no significant influence on
how fast the colony selects a food source.

In the context of the second question, Models 3 and 4 have different behaviors.
Notice that Question 1 deals, in some sense, with efficiency, while Question 2 has
to do with flexibility. Figure 32 shows the proportion of simulations where the
second, richer food source is eventually selected although it has been presented
after the first, poorer source (withr1 = 5, r2 = 15, k = 10, ρ = 10, N = 200,
C1(t = 0) = 10–60,C2(t = 0) = 0.2). Model 3 curve lies below Model 4
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curve, indicating that collective modulation endows the colony with more flexibility
than individual modulation. These results would deserve further developments, as
they point to a possible adaptive significance of genetic diversity, which leads to
collective modulation. In the context of food-source selection, many factors that
have not been taken into account, such as, for example, pheromone decay or the time
taken to go to, and come back from, the food source, should be added to the model.
Finally, alternatives to the simple models of individual and collective modulations
described here can be devised, such as hybrid models with a mixture of individual
and collective modulation.

5. RELATED WORK AND DISCUSSION

5.1. Related work on modelling the regulation of division of labor.Several mod-
els have been previously introduced to describe task allocation and its regulation
in social insects. We believe that our approach is more tractable, more understand-
able and finally closer to the data than the other models presented in this section,
although these models have, to a variable extent, inspired the present one.

5.1.1. The FFW model.We must emphasize that our model has some impor-
tant similarities with the FFW model, introduced by Tofts and Franks (1992), where
individuals actively seek work, and continue in their current role if they find work
within that role. If they do not find work within their current role, or fail to find work
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too frequently, they randomly move to adjacent zones until they find work. The
FFW model assumes that tasks are spatially ordered: the simplest possible order-
ing is a one-dimensional line, where spatial locations are represented as a function
of their distance from the centre of the nest. This ordering induces neighborhood
relationships among tasks associated with spatial locations. For example, brood
care, that necessarily takes place in the center of the nest, is far away from foraging,
that takes place outside the nest, but foraging is close to nest defense. Our basic
fixed-threshold model (Bonabeauet al., 1996) belongs to the same family as the
FFW model, as individuals may engage in task performance when they encounter
appropriate stimuli. In that respect, individuals in our model are indeed ‘seeking’
work, but the addition of response thresholds and of differential responses by dif-
ferent groups of workers are important extensions. Adding explicit relationships
between tasks [by defining, for example, how the probabilities of encountering
the various task-associated stimuli depends on the current task, equation (24)] is
a step toward the FFW model. Finally, in the FFW, a globally centrifugal motion
of individuals as they age (from the middle of the nest to outside the nest) can be
caused by an inflow of newly born individuals, who first actively seek work in the
nest, pushing older individuals to seek work outside the center of the nest. By this
mechanism, the FFW model can, in principle, produce temporal polyethism. This
model is remarkable in that it does not require any kind of biological clock that
would physiologically transform individuals at the ‘right’ time, to generate tempo-
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ral polyethism. Sendova-Franks and Franks (1993) argue that the FFW model is
fully consistent with their observations of Leptothorax ants, which are characterized
by weak temporal polyethism. Their argument is further supported by more recent
experiments (Sendova-Franks and Franks, 1995a), in which they showed the exis-
tence of individual-specific SFZ, (see Section 4.1), which appear to be independent
of the individual’s age: workers tend to perform tasks within their SFZ, irrespective
of their age. In view of recent experimental evidence [e.g., Calderone and Page
(1996); Robinsonet al. (1994)], however, it is almost certain that other mechanisms
(such as ageing, under one form or another, including learning) play a role in tem-
poral polyethism in some species of social insects, including honeybees. The FFW
model could be supplemented with a learning mechanism to account for stronger
patterns of age polyethism.

Our mechanism is similar to that of the FFW algorithm (Tofts and Franks, 1992;
Franks and Tofts, 1994), except that we use a direct dependence of spatial special-
ization on age (by spatial specialization, we mean that workers are more likely to be
found in some region of space). Our model allows for behavioral reversion when
required, but is less flexible than FFW. On the other hand, temporal polyethism is
more stable than in the pure FFW case. When we tried to set up the parameters of
our model so that it reproduces exactly the FFW model (although with a slightly
different formulation), we were unable to generate temporal polyethism solely with
spatial relationships between task-associated stimuli, which indicates that the ‘pure’
FFW model generates a somewhat unstable form of temporal polyethism. We could,
however, generate a less ‘emergent’ pattern of temporal polyethism in our model by
coupling spatial relationships between tasks with the assumption that the younger
workers tend to remain a certain time in the nest, where they perform local tasks.
This constraint, if it is sufficiently strong, i.e., if the time that newly emerged work-
ers spend in the center of the nest is sufficiently long, can effectively force older
workers to find tasks associated with stimuli which are not found at the center of the
nest. Finally, while we owe a conceptual debt to the FFW model, we believe that
our model is formulated in such a way that it will be more understandable than the
theory of the FFW model (Tofts, 1993), which was based on a probabilistic exten-
sion of Milner’s (1990) process algebra. In such a formalism, initially introduced
in the context of theoretical computer science to study general concurrent systems
comprised of interacting individuals, ants correspond to probabilistic processes
composed in parallel. The language of Tofts’ (1993) paper, being most unfamiliar
to ethologists, obscured rather than clarified the scope of the FFW model.

5.1.2. Modelling division of labor in social insects.Given a recent set of com-
mentaries (Traniello and Rosengaus, 1997; Robson and Beshers, 1997) ‘against’
modeling in general, modeling division of labor in particular, and even more specif-
ically the FFW model [see also the reply by Frankset al. (1997)], we feel that it is
useful to justify our own modeling approach, all the more as it is related to FFW.
First, as clearly explained by Frankset al. (1997), a modeling approach implies that
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only a (usually small) fraction of reality be studied and formalized; furthermore,
any scientific enterprise—stamp collecting not being considered scientific here—
is aimed at finding at least some degree of regularity in the world, and scientific
explanation is explanation (by virtue of necessarily simplifying models) of such
regularity. Physicists, obsessed as they are about universality, are responsible for
a global tendency to seek common underlying theories for virtually all phenomena
[see Bak (1997) for an extreme, provocative, but inspiring version of this tendency],
which may not always be justified. Any good theory should be characterized by
what it cannot explain and what it cannot explain, and both sides are equally im-
portant. For instance, in the context of division of labor, finding a potential general
mechanism, such as FFW, is an honorable quest provided one understands that what
Traniello and Rosengaus (1997) call species-specific traits are not part of this theo-
retical framework, the aim of which is precisely to point to common features rather
than to differences. Such differences are not explained by FFW, but suggests that
there may be common underlying mechanisms responsible for division of labor,
including observed patterns of temporal polyethism. This approach is particularly
important if one is seeking ancestral mechanisms that allowed for the emergence of
eusociality (for example, mechanisms upon which an efficient division of labor can
be based): evolution may have refined and perhaps sometimes substantially mod-
ified such ancestral mechanisms, but finding common features is essential as they
point to possible common ancestral features that were important for the appearance
of eusociality. The threshold model is also a general model of task allocation, which
can be useful not only to explain observed behavior, but also, perhaps, to point to
potential common ancestral mechanisms. Finally, the assumptions of the basic
model presented in this paper are based on experimental evidence (Detrain and Pas-
teels, 1991, 1992), and can account for other experimental results [Wilson (1984)
for example]. This gives more weight to the extensions of the model, and at the
same time the model allows us to test what is and what is not possible within its
framework. For example, we have indicated several times that only a weak form
of temporal polyethism can be obtained in this model, with highly specific values
of the parameters, which suggests that other ingredients are required to account for
some observed patterns of temporal polyethism.

5.1.3. Boolean network model.Page and Mitchell (1990) and Page and Robin-
son (1991) have developed a model of task allocation in honeybees based on the
threshold principle, where individuals are represented as boolean automata embed-
ded within a network. They did not try, however, to relate quantitatively their results
to any specific experimental observation. In their model, each worker bee is a binary
switching element (that can either be 1 or 0: performing or not performing a given
task), connected toK other elements. An element switches on and off depending
on how many 0s and 1s it perceives from theK elements it is connected to. The
idea is that individuals receive information from other individuals (in particular,
they can perceive the current task of theK individuals they encounter per unit time)
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in the colony and decide to become engaged or to give up task performance de-
pending on this information. There is also an external input to each element, which
represents task-associated stimuli. This external ‘field’ is decreased by one unit by
unit time for each individual performing the task, and is regularly incremented to
represent the dynamics of colony needs irrespective of task performance. When
the combined input to a given inactive element (state 0) exceeds a threshold, this
individual becomes engaged in task performance (state 1), and vice versa. The
magnitude of the external field has a positive effect on task performance, while
the number of workers already performing the task acts as a negative feedback.
This model is obviously very similar in spirit to the model described in the present
paper. Page and Mitchell (1990) found that a boolean network following these
rules converges to a steady state, where the proportion of active elements depends
on the value of the threshold. They also studied the effect of the variance of the
threshold distribution on the properties of the network, and found that responses to
disturbances drive the stimulus back to its predisturbance level for highly peaked
distributions, while the regulation of stimulus level was not as good in wider dis-
tributions, although the number of active elements did change in response to the
perturbation. These findings show that a network of simple interconnected elements
can exhibit remarkable homeostatic properties, but they are not clearly related to
quantitative experimental results. Note that our model shows that the same type
of properties can be obtained without any explicit interaction among individuals
(although such interactions certainly do play a role in evaluating colony needs), as
the magnitude of the stimulus alone is sufficient to determine approximately the
number of individuals involved in task performance. Therefore, in principle it is
not necessary for individuals to know how many other colony members are active.
A combination of task-associated stimuli and interactions with other workers is,
however, likely to be the relevant information acquisition mechanism.

5.1.4. Connectionist model of task allocation.In an attempt to account for the
field observations of Gordon (1986, 1987, 1989) on the dynamics of task allocation
in harvester ants, Gordonet al. (1992) have developed a model based on a con-
nectionist (neural net) model, which can be seen as a more complex (and a more
experiment-driven) version of Page and Mitchell’s (1990) boolean network, where
units correspond to ants, possible states of a given unit to tasks that can be performed
by the ant, and patterns of connections to observed patterns of interaction among
individuals. They modeled eight categories of ants. Antk is represented by a set
of three binary values(ak = ±1,bk = ±1, ck = ±1), so that all eight categories
can be represented: inactive patrollers(−1,1,1), active patrollers (1,1,1), inactive
foragers(−1,1,−1), active foragers(1,1,−1), inactive nest maintenance workers
(−1,−1,1), active nest maintenance workers(1,−1,1), inactive midden workers
(−1,−1,−1), and active midden workers(1,−1,−1). Matrices of interactions
α jk , β jk andγ jk , and between Antj and Antk are defined forak, bk, andck respec-
tively. One specific feature of this model is that the set of interactions of a given unit
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with other units changes when the unit changes state. The dynamics of the fully
connected system proceeds by elementary moves (changingak, bk, or ck) at each
discrete time step, depending on the signs of

∑
k α jkak,

∑
k β jkbk, and

∑
k γ jkck:

ak(t + 1) = 2

[(
2
∑

k

α jkak(t)

)
− 1

2

]
, (32.1)

bk(t + 1) = 2

[(
2
∑

k

β jkbk(t)

)
− 1

2

]
, (32.2)

ck(t + 1) = 2

[(
2
∑

k

γ jkck(t)

)
− 1

2

]
, (32.3)

where2(x) = 1 if x > 0, and2(x) = 0 otherwise. Notice that these conditions
are deterministic threshold conditions: when some weighted input exceeds, or goes
below, some threshold (here, 0), an individual switches tasks or becomes (in)active.
Their model is therefore fundamentally a threshold model, where stimulus intensity
is a weighted sum of inputs from other individuals. They showed that, depending
on the pattern of interactions among individuals, the system can have one or several
attractors, and that perturbations of one activity propagates to others. One important
assumption of their model is that the evaluation of colony needs by an individual
is performed only through interactions with other members of the colony, i.e., only
numbers of workers engaged in the different tasks are used by an individual to decide
what task to perform next (depending also on its current state). The magnitude of
task-associated stimuli are not taken into account, which makes the functioning of
the system rely solely on an internal dynamics. Gordonet al. (1992) were able to
reproduce some experimental results qualitatively, but other results are unlikely to
be explained, as the model cannot be robust with respect to certain perturbations
(for example, because it is insensitive to colony needs).

5.1.5. A general model of task allocation.Pacalaet al. (1996) have recently
developed a rather general, simple model of task allocation. LetQ be the number
of different tasks to be performed,N the total number of individuals,xi the number
of workers engaged in taski , σi the probability that individuals performing Taski
are successful (an individual that views the environment as profitable (respectively,
unprofitable) is in the successful (respectively, unsuccessful) state),ρi j the mean
local density of Taskj individuals about a Taski individual, ρI i the mean local
density of Taski individuals about a inactive individual,q the probability per
unit time that an unsuccessful individual becomes inactive. Interactions among
individuals are modeled as simple collisions. The rate at which an individual
engaged in Taski encounters individuals engaged in Taskj is proportional toρi j .
An inactive individual is recruited to perform Taski if it interacts with a successful
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Taski individual: the rate of activation into Taski is therefore proportional toρI i .
The dynamics ofxi is given by

∂t xi = −xi (1− σi )q +
Q∑

j=1

[xiσiρi j (1− σ j )− xjσ jρ j i (1− σi )] + xiσiρI i . (33)

Equation (33) is similar in spirit to equation (12), where stimulus intensitysi has
been replaced byσi , and where the response function depends linearly onσi and also
on a recruitment process [in equation (33), two mistakes present in Pacalaet al.’s
(1996) equation (1) have been corrected]. The dynamics ofσi must be specified in
order for the model to be complete. Pacalaet al. (1996) assume that a successful
individual switches to the unsuccessful state with a probabilityτ−1 per unit time,
and that processing a unit of resource within a time unit increasesσ1. Letϕi be the
resource density (per unit area) andk a parameter affecting the rate of increase of
σi . The dynamics ofσi is given by

∂tσi = −σi

τ
+ kϕi (1− σi ). (34)

If crowding avoidance is taken into account, equation (34) has to be supplemented
with a new term:

∂tσi = −σi

τ
+ kϕi (1− σi )− ξ xi

αi
σi , (35)

whereξ is a constant of proportionality andαi is the area over which Taski is being
performed. Clearly,ϕi can change over time, because resources get depleted. The
dynamics ofϕi is then given by

∂tϕi = 0i − µϕi − kϕi xi , (36)

where0i is the rate of creation of the resource (for example seeds that fall to the
ground), andµ is the ‘natural’ rate of disappearance of the resource (wind, other
colonies, and so forth). Pacalaet al. (1996) considered three cases forσi and
ϕi : (1) there is no crowding avoidance andϕi does not vary with time (resources
are abundant), (2) there is no crowding avoidance butϕi varies because resources
get depleted, and (3) there is crowding avoidance andϕi varies because resources
get depleted. In all three cases, Pacalaet al. (1996) assumed that the dynamics
of σi and ϕi are fast with respect to variations inxi . Curiously, they did not
consider the case where there are increasing returns for increasingxi , which can
be the case when, for example, allocating a lot of workers to a given task is safer.
More importantly, they did not consider how variations in colony needs resulting
from task performance, which obviously have an influence onσi , could influence
patterns of task allocation. Their model is therefore aimed at describing short-term
task allocation, or, alternatively, can be seen as a general model of recruitment.
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In equation (33), Pacalaet al. (1996) assumed thatρi j is given byxj I (N)/N,
whereI (N) is the ‘per capitarate of social interaction as a function of group size’.
They studied the influence ofI (N) on patterns of task allocation. They showed
that some parameter values allow individual- or colony-level evolutionarily stable
strategies to be implemented by means of simple individual behavior. Although they
presented simulations of their model withI (N) proportional toN, they showed that
I (N) should be tuned to maximize fitness. Larger groups may be more efficient
than smaller ones at tracking a changing environment when rates of interactions
per individual increase with group size, but there may be an overload of social
information in very large groups, that can become trapped in suboptimal states.
Pacalaet al. (1996) predict that, in order to balance optimally, the flows of infor-
mation from environmental stimuli and social exchanges (antennation, mandibular
contacts, trophallaxis, etc.) across a range of group sizes, ants should regulate their
per capitarates of social interaction.

5.2. Predictions of the model and connection to experimental work.The fixed
threshold model is arguably the simplest model that connects flexibility at the worker
level with the resiliency observed at the colony level, in a way that is consistent with
experimental data. In that respect, this model makes an important prediction: that
fixed response thresholds are sufficient to reproduce and possibly explain numerous
aspects of task allocation in social insects. An important task is now to study re-
sponse curves and show the existence of response thresholds in experiments. Several
experiments, some results of which are briefly described in Section 2, have shown
the existence of response thresholds, but they do not allow us to connect individual
and colonial levels. It would be extremely valuable to find empirical evidence for
differential response thresholds in minors and majors in the polymorphic species
studied by Wilson (1984). Our model generates results that are consistent with these
experiments, which indicates that differential response curves at the individual level
might be the underlying mechanism of colony-level flexibility. Preliminary experi-
ments onLasius niger(Deneubourget al., in prep.) indicate that different response
thresholds to different seed sizes might be responsible for the fact that small seeds
are processed first, followed by medium-sized and large seeds, thereby suggesting
that Model 1 may be valid. Finally, we also believe that our model will be useful
to students of social insects when interpreting results of experiments on division
of labor. Before looking for complex mechanisms, it may make more sense to ask
whether an empirical result could be explained by the fixed-threshold model.

5.3. Limitations of the fixed threshold and future modeling directions.The
fixed threshold model can account, at least partly, for the behavioral flexibility ob-
served in ants, when manipulations such as those reported by Wilson (1984) on
several species ofPheidoleare carried out (Bonabeauet al., 1996). Because this
model is also biologically plausible, our aim in this paper was to explore what
could be expected from the model. Clearly, it can explain some aspects of division
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of labor, including colony-level flexibility in polymorphic species, within-‘caste’
flexibility and task switching, spatial fidelity, weak temporal polyethism, or task
succession, but it is not always consistent with experimental observations, especially
when ‘long’ time scales are involved. Until recently the ‘classical’ view of division
of labor (Oster and Wilson, 1978) was that it was a relatively static phenomenon,
with caste ratios, or more generally ‘class ratios’ (Calabi, 1988), determined by
ergonomic and energetic considerations. Although within- and between-caste task
switching and flexibility are observed (Wilson, 1984; Lenoir, 1987; Calabi, 1988;
Gordon, 1989), such considerations do appear to be important, and observed (age,
physical or behavioral) class ratios have certainly been selected for in the course
of evolution on the basis of these factors. For example, Wilson (1983b) observed
flexibility in Atta cephalotesants when one class of workers is removed; replace-
ment workers perform similarly to ‘specialized’ workers in terms of frequency and
effectiveness of task performance, but are 30% less efficient with respect to oxygen
consumption (Calabi, 1988). It is therefore tempting to think, following Calabi
(1988), that ‘optimal’ caste ratios predicted on the basis of energetic factors (Oster
and Wilson, 1978) are relevant over evolutionary time scales, and that observed caste
ratios have been shaped more or less accordingly, but on short time scales, chang-
ing ecological conditions make flexibility an absolute necessity—flexibility has also
been selected for. ‘Where colony survival is at issue, considerations of behavioral
and/or metabolic efficiency should be secondary. By this reasoning, the caste distri-
bution function only approximately reflects long-term selective pressures, because
flexibility among classes allows short-term compensation for any ‘slop’ or inappro-
priateness in caste ratios’ (Calabi, 1988). The same argument applies in support of
West-Eberhard’s (1981) hypothesis of centrifugal task allocation (see Section 4.1):
selection acting at the level of the individual exerts a long-term pressure leading to a
more or less marked centrifugal pattern of temporal task allocation, and short-term
flexibility, driven by immediate colony requirements, tends to blur this pattern. The
threshold model is able to reconcile both views, i.e., both time scales. For exam-
ple, in polymorphic species, response thresholds may be determined by physical
caste, with caste ratios being determined (at least partly) by energetic factors. In
‘normal’ conditions, i.e., when all individuals belonging to all physical castes are
present and when there is no particular stress on the colony (such conditions may
in fact be quite abnormal!), task allocation should follow exactly caste distribution.
When, however, a large portion of a given caste is missing, individuals belonging to
other castes may replace missing workers, through the mechanism developed in this
paper. The understanding of ‘age-based’ task allocation and within-age-class flex-
ibility might, however, require a little more than the simple fixed threshold model,
although flexibility alone can in principle be understood with this model on short
time scales, using the same argument as for physical castes.

Although it has been argued several times by Franks and colleagues (Franks and Tofts,
1994; Frankset al., 1997) that one should not confuse causality with correlation, and
specifically correlation between age and task with an age-based division of labor,
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recent experiments (Robinsonet al., 1994; Calderone and Page, 1996) suggest that
response thresholds, if they play a role in task allocation, are unlikely to be fixed.
Variability in response thresholds may result from two, somewhat complementary,
mechanisms; ageing and learning.

(1) In the context of response thresholds, ageing would involve the modification
of thresholds with time, so that, for example, a young individual would have
a naturally high response threshold with respect to nest defense, but that
threshold would progressively become lower as the individual ages, until the
probability of response to a defense-related stimulus becomes significant.

(2) Learning would involve, for example, reduction of a response threshold
when the associated task is being performed (task ‘fixation’), and increase of
the response threshold when the task is not being performed (‘unlearning’)
(Deneubourget al., 1987; Plowright and Plowright, 1988; Theraulazet al.,
1991).

Both mechanisms seem to be involved; in particular, the role of learning has
been evidenced. Witherset al. (1993) have shown that important changes in some
regions of the brain are associated with ageing: foragers (> 20 days old) are char-
acterized by a smaller volume of Kenyon cells (neurons of the mushroom bodies)
and a significantly larger neuropil volume (where synaptic connections are located)
than 1-day-old bees, suggesting a high synapse-to-neuron ratio in older bees. Nurse
bees, intermediate in age, have intermediate volumes of Kenyon cells and neuropil.
These observations could result from absolute ageing, but further experiments, car-
ried out on artificial colonies comprising a single age cohort of 1-day-old bees,
where worker bees start foraging as early as 4 days old, showed that precocious for-
agers had similar mushroom bodies as normal foragers, and that nurses were again
intermediate. This suggests that behavior influences brain organization, which in
turn certainly influences under what conditions tasks are performed. Therefore, age-
ing alone cannot explain Witherset al.’s (1993) observations. Calderone and Page
(1996) showed that deprived bees (raised in isolation in wire cages with a queen)
exhibit precocious foraging, suggesting that the lack of certain stimuli may influ-
ence the rate of behavioral ontogeny [a possibility that Calderone and Page (1996)
did not rule out; see also Huang and Robinson (1992)]. More generally, relative
age (i.e., age relative to the rest of the colony) is often a more relevant parameter
than absolute age (Lenoir, 1979; Jaissonet al., 1988; Calabi, 1988; Van der Blom,
1993; Sendova-Franks and Franks, 1994), which means that stimuli provided by
the environment and other colony members are likely to play an important role
in shaping behavioral ontogeny. These studies suggest that individual experience
shapes behavioral ontogeny, and that response thresholds may be dynamic, rather
than static. But whether behavior is a cause or an effect of ageing remains an
unsolved question.

As emphasized by Sendova-Franks and Franks (1993, 1994), the FFW model
or threshold models can readily be supplemented with learning or reinforcement,
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leading to stronger specialization and, under the appropriate conditions, stronger
patterns of temporal polyethism: ‘ants become increasingly entrained on certain
tasks they practice, and seek out such tasks in preference to others’ (Sendova-
Franks and Franks, 1993), leading to the phenomenon of strong ‘task fixation’
(Wilson, 1976). Theraulazet al. (1991) developed a model of regulation of division
of labor combined with hierarchical differentiation based on variable thresholds. In
their model, a threshold is lowered when the corresponding task is performed, and
increased when the corresponding task is not performed [see also Deneubourget al.
(1987) and Plowright and Plowright (1988)]. But, although their model is able to
generate sociogenesis, it is still necessary to compare its behavior with experiments
and to determine what it can explain and what it cannot explain.

There are other limitations inherent to the model presented in this paper: it does
not really take into account complex networks of interactions among individuals, it
assumes a single way of getting information about a given task or about different
tasks, and does not deal accurately with spatial heterogeneities. It is in a sense a
mean-field model. But all these limitations can be overcome in future works, while
retaining the essence of the concept of response threshold.

Finally, our study has been aimed at clarifying the mechanisms underlying the
regulation of division of labor in social insects. We did not discuss the adap-
tive significance of such patterns. We believe, however, that understanding the
mechanisms that allow social insects to perform complex tasks collectively, is a
necessary step towards understanding the evolution of social behavior (Mangel,
1995; Bonabeauet al., 1997).
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