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Abstract

Most studies describing animal movements have been developed in the framework of population dispersion or population

dynamics, and have mainly focused on movements in open spaces. During their trips, however, animals are likely to encounter

physical heterogeneities that guide their movements and, as a result, influence their spatial distribution. In this paper, we develop a

statistical model of individual movement in a bounded space. We introduced cockroaches in a circular arena and quantified

accurately the behaviors underlying their movement in a finite space. Close to the edges, we considered that the animals exhibit a

linear movement mode with a constant probability per unit time to leave the edge and enter the central zone of the arena. Far from

the walls cockroaches were assumed to move according to a diffusive random walk which enabled us to overcome the inherent

problem of the quantification of the turning angle distribution. A numerical model implementing the behavioral rules derived from

our experiments, confirms that the pattern of the spatial distribution of animals observed can be reliably accounted for by wall-

following behaviors combined with a diffusive random walk. The approach developed in this study can be applied to model the

movements of animals in various environment under consideration of spatial structure.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Random walk and diffusion models are commonly
used to describe animal movements in their environ-
ment, analyse their dispersion and predict their spatial
distribution (Okubo, 1980; Kareiva and Shigesada,
1983; McCulloch and Cain, 1989; Berg, 1993; Turchin,
1998; Byers, 2001). These models have been used for
instance to describe the foraging patterns of ants (Crist
and McMahon, 1991), the search for resources in
butterflies (Root and Kareiva, 1984) or the migration
patterns of vertebrates (Bergman et al., 2000).
Land cover types and landscape spatial heterogene-

ities (e.g. patch boundaries or habitat edges) can affect
the spatial distribution of organisms through their
influence on their movement patterns (Crist et al.,
1992; Johnson et al., 1992; Wiens et al., 1993; Morales
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and Ellner, 2002). In particular, the influence of small-
scale physical heterogeneities of the environment will be
important for small size walking or crawling species. For
instance, it is known that ants and termites orient their
movements along the structural guidelines created by
rocks, crest lines or grooves (Jander and Daumer, 1974;
Klotz and Reid, 1992, 1993; Klotz et al., 2000). The
tendency for an organism to orient itself in space by
mechanical contacts has been termed thigmotaxis
(Fraenkel and Gunn, 1961), and the trend to move
along edges has been defined as wall-following behavior
(Creed and Miller, 1990). In these cases, animals are
not attracted towards physical heterogeneities by long-
range stimulations (as it is the case in phototaxis or
chemotaxis) but rather, they move randomly in the
environment until establishing a physical contact with
an obstacle that will guide their motion.
In this paper we investigate how the motion patterns

of organisms are affected by the presence of physical
edges in a simple situation in which the tracking and
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quantification of animals’ movements can be easily
conducted. We study the movements of the German
cockroach Blattella germanica (L.) when introduced in a
circular arena. In this situation cockroaches display both
exploratory and wall-following behaviors (Darchen,
1957). First, we identify and quantify the behavioral
rules that were assumed to contribute to the spatial
distribution of the cockroaches. We then built a
statistical model of individual motion to verify that
these behavioral rules can explain the spatial distribu-
tion of cockroaches in an enclosed area, qualitatively as
well as quantitatively.
Peripheral zone 

Central zone 

Peripheral  zone 

0.5 cm 

Central zone 

11 cm 

Fig. 1. Experimental arena (cockroach and arena are represented at

approximately the same scale). A cockroach was considered to walk in

the peripheral zone when it could establish an antennal contact with

the wall (see enlargement).
2. Methods and results

2.1. Experimental set-up, data collection and definition of

individual behaviors

2.1.1. Experimental animals

Experiments were performed with first instar larvae
(24-h old) of B. germanica (L.) (Dictyoptera: Blattelli-
dae). At this stage of development the body length is
about 3mm (excluding the antennae), the body width
2mm and the antennae length 3mm. The experimental
arena was 11 cm in diameter and 0.3 cm in height. It was
covered with a glass plate to avoid air currents and to
prevent larvae from escaping. The arena was cleaned
before each experiment with hot soapy water and
alcohol to remove any residual chemical cues. The set-
up was placed on a table surrounded with white curtains
to homogenize the light and to mask visual landmarks.
At the beginning of an experiment an individual was
introduced under CO2 narcosis at the center of the
arena. Each experiment was set to 60min and the larvae
were used only once. A total of 19 replications were
performed.

2.1.2. Path analysis

The behavior of the cockroaches was recorded
continuously with a high definition camera (Sony
CDR-VX 2000 E) placed above the arena. The paths
were then digitized at a sample rate of one point
every 0.68 s with an automatic video-tracking software
(Ethovisions, version 1.90, Noldus Information
Technology). Calibration factors were 0.06 cmpixel�1

on the Y-axis and 0.05 cmpixel�1 on the X -axis.
The sampling rate was chosen so as to avoid both
undersampling (which induces a loss of information
due to low temporal resolution) and oversampling
(which introduces some noise due to the wobbling
movement of the larva). The paths were converted as a
series of Cartesian coordinates and were characterized
by several parameters (that will be detailed in the result
section).
2.1.3. Criteria for wall-following behavior

When introduced in the arena, the cockroaches spent
most of their time (about 50%, see below) walking close
to the edge of the arena, with their ipsilateral antenna
dragging along the wall. When a cockroach moves along
the edge, it holds its antennae forward in a slightly
lateral position and maintains its relative position to
the wall with the mechanoreceptors associated to the
antennae (Camhi and Johnson, 1999; Okada and Toh,
2000). In our experiments, we distinguished two kinds of
movements depending on the distance between the larva
and the edge of the arena. We considered that a
cockroach displayed wall-following behavior when it
was less than 0.5 cm from the wall. This corresponds to
the minimal distance required for a larva to establish an
antennal contact with the wall. Hereafter, we will call
this zone the peripheral zone (of the arena) (Fig. 1). The
rest of the arena will be defined as the central zone.

2.1.4. Definition of a path

We assumed that a cockroach remained motionless
when the two following conditions were fulfilled: (1) its
displacement between two successive steps was less than
0.1mm and (2) the stop duration was at least 1.36 s
(corresponding to two successive observations). In the
peripheral zone, the beginning of a path was determined
by the occurrence of one of the two following events: (1)
a motionless cockroach in the peripheral zone started
a new displacement or (2) a moving larva reached the
peripheral zone from the central zone. A path ended
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Fig. 2. Natural logarithm of the fraction of cockroaches that are still stopped as a function of time for experimental data (795% confidence interval)

and from simulations (that assume a double exponential distribution of stop durations). Note that each plot corresponds to the survival curve of 1060

stopping durations. The insert shows both curves for stopping durations less than 600 s.
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each time a larva stopped its movement or when it left
the peripheral zone. In the central zone, we considered
that a path began when either (1) a larva had just left the
peripheral zone and entered the central zone or (2) a
motionless cockroach in the central zone started to
move. A path ended each time a larva entered the
peripheral zone or stopped its displacement in the
central zone.

2.2. Statistical modeling of individual behaviors

This section is devoted to the statistical quantification
of individual behaviors based on the observed move-
ments. The data collected for the 19 cockroaches were
pooled.

2.2.1. Duration of stops in the peripheral and central

zones of the arena

There was no significant difference between the
duration of the motionless state in the peripheral ðn ¼
634Þ and the central zone of the arena ðn ¼ 426Þ (Mann–
Whitney test, Z ¼ �1:37; P > 0:05). If the probability
for a larva to initiate a new displacement was constant
over time then the log-survival curve of the number of
cockroaches still motionless either in the central or the
peripheral zone of the arena should fit a straight line
(Haccou and Meelis, 1992). However, as shown in Fig. 2,
the curve suggests that the duration of the stops was
either short or long. We thus assumed that each
cockroach can be in two states that control the duration
of the stops. This hypothesis is supported by behavioral
observations. Indeed, when a cockroach stops it may
remain either active and display antennal movements
(‘‘awake’’ state) or inactive without performing any
antennal movement (‘‘resting’’ state). The ‘‘awake’’ state
is characterized by short stops and the ‘‘resting’’ state by
long stops. We hypothesized that each kind of stops
follows an exponential law. We then estimated the
probability pShort for a cockroach to be in the ‘‘awake’’
state and the mean duration of short and long stops
(respectively tShort and tLong) by fitting the fraction of
cockroaches F(t) still motionless at time t with the
following equation (using the least squares method):

F ¼ pShorte
�t=tShort þ ð1� pShortÞe�t=tLong :

The best fit was obtained with pShort ¼ 0:93;
tShort ¼ 5:87 s and tLong ¼ 700 s. Using these parameter
values, we computed a theoretical distribution of stop
durations ðn ¼ 1060Þ with Monte Carlo simulations.
There were no significant differences between the
theoretical and experimental distributions (Mann–
Whitney test, Z ¼ �0:6; p > 0:05). The good agreement
suggests that stopping times can be satisfactorily
explained by the two internal states we hypothesized.
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Fig. 3. Natural logarithm of the fraction of cockroaches that did not

stop or exit the peripheral zone as a function of time (n ¼ 1418). Error

bars are 95% confidence intervals.
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2.2.2. Wall-following movement

Paths characteristics in the peripheral zone: The
cockroaches were assumed to exhibit a linear motion
mode, i.e. the larvae were considered to move tangen-
tially along the arena wall at a distance of 0.5 cm.

Mean velocity in the peripheral zone: We measured
the angular difference yi of the position of the cockroach
at the beginning and the end of each path (as defined
above) with respect to the center of the arena (arena
radius: r) and its relative duration ti. Taking into
account all the paths collected for all larvae,
the average velocity /vpS; was then computed as
follows:

/vpS ¼
Pi¼n

i¼1ðryiÞPi¼n
i¼1 ti

:

Using this formula we found that the average velocity at
the peripheral zone was 1.06 cm s�1 ðn ¼ 1418Þ:

Probabilities to stop and to exit the peripheral zone:
We computed the duration of each path of the
cockroaches in the peripheral zone and then calculated
the fraction F ðtÞ of cockroaches that did not stop
or leave the periphery as a function of time t, i.e. F ðtÞ
is the fraction of individuals still moving at time t.

Fig. 3 shows the resulting extinction curve on a semi-
logarithmic scale. This curve can be fitted by a linear
function

lnðF ðtÞÞ ¼ �
t

t
:

The extinction curve of the two behaviors is thus
characterized by an exponential decay and the prob-
ability per unit time to perform one of the two behaviors
is independent of the duration of the path previously
covered by the cockroach (Haccou and Meelis, 1992).
This corresponds to a memory-less process, t gives the
characteristic time before a cockroach leaves the
periphery or stops and dt/t gives the probability that
one of these events occurs during the time interval dt.
Leaving the periphery and making a stop are two
exclusive events which means that during a time interval
dt, only either of these events might occur; therefore the
probability that a cockroach performs one of these
behaviors during dt is given by

dt

t
¼

dt

tExit

þ
dt

tStop;p
;

where tStop;p and tExit are the characteristic times,
respectively, before a stop in the peripheral zone or an
exit. It can easily be shown that

1

tStop;p
¼
1

t
NStop;p

N

� �
;

where NStop;p is the number of paths that ended with a
stop and N is the total number of paths that ended either
with a stop or an exit from the peripheral zone.
In the experiments we found NStop;p ¼ 567; N ¼ 1418
and 1=t ¼ 0:20 s�1 (Fig. 3). It follows that

1

tStop;p
¼ 0:08 s�1;

1

tExit

¼ 0:12 s�1:

2.2.3. Movement in the central zone

Mean velocity in the central zone: We considered each
path i recorded in the central zone of the arena (as
defined above) and measured its length li and its relative
duration ti. Considering all the paths collected for all
larvae, the average velocity, /vcS was computed as
follows:

/vcS ¼
Pi¼n

i¼1ðliÞPi¼n
i¼1ðtiÞ

:

Using this formula we found that the mean velocity of a
moving cockroach in the central zone of the arena was
1.1 cm s�1 ðn ¼ 1332Þ:

Path characteristics in the central zone of the arena:
The continuous movements of the cockroaches can be
approximated by a series of straight line interrupted by
angular reorientations (Turchin et al., 1991). Their
trajectories can thus be characterized by a mean free
path (l) which corresponds to the average length covered
by a cockroach between two successive changes of
direction and a phase function pðy0=yÞ; which represents
the probability distribution for a cockroach with an
initial direction y to continue in a direction y0 (Bovet and
Benhamou, 1988). The degree of anisotropy of the phase
function (g) gives a measure of the tendency to move in
the same direction; this parameter is defined by the
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formula

g ¼ /cosðyÞS ¼
Z
2p

pðy0 j yÞ cos ðy0Þ dy0; gA½�1; 1	:

A value of g close to 1 indicates a high degree of
directional persistence, whereas a value close to �1
indicates frequent reversal of direction. When the
frequency distribution of changes of direction is uniform
g ¼ 0 and the diffusion is isotropic.
The calculation of the distribution of turning angles

requires an unbiased criterion to establish accurately at
which moment a cockroach significantly changed the
direction of its path (Tourtellot et al., 1991; Turchin,
1998). However, finding such a criterion without making
arbitrary assumption is a difficult task. An alternative
method is to compute the transport mean free path, l�.
The value l� represents the distance for which the
random walk become uncorrelated. Diffusion theory
states that, for an isotropic phase function and after a
few diffusive events, the spatial distribution of organ-
isms can be reliably reproduced with an isotropic phase
function and the transport mean free path (Case and
Zweifel, 1967). The calculation of l� does not require the
characterization of the phase function:

l� ¼
l

1� g
l�A

l

2
;þN

� �
:

The net squared displacement of a moving individual is
given by (Kareiva and Shigesada, 1983)

/R2
nSEn

Z þN

0

l2pðlÞ dl;

where pðlÞ dl is the probability that the length of each
path has a value between l and l þ dl. /R2

nS corre-
sponds to the straight line distance between the
beginning of a path and the position of the individual
after n consecutive steps. In the case of a diffusive
random walk, assuming an exponential distribution of
the path lengths with a characteristic length l�:

pðlÞ ¼
1

l�
ðe�l=l�Þ:

Then,

/R2
nSEn

Z þN

0

l2
1

l�
ðe�l=l� Þ dlE2nðl�Þ2: ð1Þ

Assuming that the velocity v is constant:

n ¼
tv

l�
ð2Þ

and substituting Eq. (2) in Eq. (1) we finally get

/R2
nSE2vðl�Þt and l� ¼

/R2
nS

2vt
: ð3Þ

For each path and each time step, we calculated the
square of the distance, Rn; between the beginning of the
path ðx0; y0Þ and the position ðx; yÞ of the cockroach
after n steps:

R2
n ¼ ðxn � x0Þ

2 þ ðyn � y0Þ
2:

Fig. 4 shows the average squared distances /R2
nS as a

function of time obtained for all paths recorded in the
central zone of the arena. During the diffusive regime,
the mean squared net displacement increases linearly
with time, it then reaches a plateau as a consequence
of finite space provided by the arena that prevents
cockroaches to diffuse further away.
Fitting the initial linear part of the curve to get the

slope, we obtained (Fig. 4)

/R2
nðtÞS ¼ 5:11t � 5:49; r2 ¼ 0:99: ð4Þ

With v=1.1 cm s�1, and using Eqs. (3) and (4), we get
the value of the transport mean free path l� ¼ 2:32 cm.
The experimental values of /vcS and l� were then

used in Monte Carlo simulations of a diffusive random
walk model (simulation details will be described below)
with an arena size similar to the one used in our
experiments. The mean squared displacement was
computed with the same procedure as that described
for the experimental paths (Fig. 4). The qualitative
agreement between the results of the experiments and
the simulations suggests that the movement of the
cockroaches in the central zone of the arena can be
confidently modeled by a diffusive random walk model
with the experimentally assessed parameters. The
simulations done with an arena of infinite size confirm
that the plateau reached in the second part of the curve
is due to the confinement in a finite space. It also
confirms that the confinement effect is not prejudicial
for the application of the random walk model. Note
that the minor disagreement between experiments and
simulations concerning the transition between the
ballistic (initial part of the curve) and the diffusive
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regime does not bias the assessment of the transport
mean free path. This deviation results from the variation
in the velocity of the cockroaches during the experi-
ments while the velocity is assumed to remain constant
in the model.

Probability to stop in the central zone: To assess the
probability for a larva to stop in the central zone we
used only the paths of the cockroaches that started in
the peripheral zone of the arena and that either stopped
in the central zone or returned to the periphery.
Assuming a constant velocity vc; the fraction FStop;c of
cockroaches that stopped from the entry point in the
central zone of the arena can be expressed by the
formula

FStop;c ¼ 1�
Z þN

0

pðLÞe�L=vctStop;c dL

¼ 1�/eð�L=vctStop;cÞS; ð5Þ

where 1=tStop;c is the probability to stop per unit time.
The second term in Eq. (5) represents the mean
exponential attenuation over all possible paths of length
L defined on [0;+N[. To compute 1=tStop;c; we need to
characterize the distribution pðLÞ of the lengths of the
diffusive paths (which began and ended at the periph-
ery). Under the assumption that tStop;c is larger than the
characteristic time required to cross the whole area, one
can use the approximation

/e�L=ðvctStop;cÞSE 1�
L

vctStop;c

� �� �

and Eq. (5) simplifies to

FStop;cE
/LS

vctStop;c

� �
:

Then,

1

tStop;c
¼

vcðFStop;cÞ
/LS

: ð6Þ

Blanco and Fournier (2003) have shown that in the case
of a pure diffusive process with an isotropic incidence,
the average trajectory length /LS; defined as the mean
length of the random walk trajectories from the entry
point to the first exit out of the diffusive area, is
independent of the diffusion path features and depends
only on the geometry of the system. For our circular
arena we get

/LS ¼
dp
4
; ð7Þ

where d is the diameter of the arena (10 cm for the
central zone) over which the diffusive process occurs.
This yields a value of /LS ¼ 7:85 cm: In the present
case, however, the incidence is not strictly isotropic.
Computing /LS from experiments and from Monte
Carlo simulations based on the behavioral rules derived
from the experiments (see below), we obtained a value of
7.5470.37 cm (mean7SE, n ¼ 949) and 7.4370.069 cm
(mean7SE, n ¼ 10; 000), respectively. Both values are
close to the theoretical one. This indicates that the
theoretical value computed from Eq. (7) can be used
confidently (even for a non strictly isotropic incidence).
It also confirms that the use of a random walk model in
the central zone of the arena was justified.
Therefore, from Eqs. (6) and (7) we get

1

tStop;c
¼
4vcðFStop;cÞ

pd
:

In the central zone of the arena, the fraction FStop;c was
21% ðn ¼ 1207Þ: Thus, the probability per unit time to
stop in the central zone of the arena is

1

tStop;c
¼ 0:03 s�1:

2.2.4. Coupling cockroaches movement in the peripheral

and central zones

In the preceding sections we characterized cockroach
movements either in the central or in the peripheral zone
of the arena. To explain the observed spatial distribu-
tion of cockroaches in the arena, the next step is to link
both categories of movements. To do this, we need to
characterize the distribution of changes of direction
when a cockroach enter the central zone from the
peripheral zone, and conversely the peripheral zone
from the central zone. We first considered the case of a
cockroach that goes from the peripheral to the central
zone of the arena. We computed the angle between the
direction of the cockroach at the periphery, assuming it
walked tangentially to the wall, and the direction of its
trajectory after it has just entered the central zone. The
cockroaches can only depart from the peripheral zone
with angles ranging from 0
 to 180
; the latter case
corresponds to a U-turn (Fig. 5). The distribution of
directional changes shown in Fig. 5 is skewed to the
left, which indicates that most directional changes are
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close to the forward direction. The experimental
distribution was fitted with a log-normal distribution
(widespread in biological systems: Limpert et al., 2001),
specified by two parameters that can easily be incorpo-
rated into a simulation model (geometric mean� /
SD ¼ 36:6� =2:14 degrees, n ¼ 1207).
When a cockroach moved from the central zone and

entered the peripheral zone, the problem was to
determine in which direction it turned once it was in
the peripheral zone. Behavioral observations indicated
that a cockroach, reaching the periphery, pursued its
walk forwardly, i.e. the larva minimized its angular
deviation in relation to the previous direction of its path
in the central zone.

2.3. Model description and comparison of the model’s

predictions with experimental results

At this stage, all behavioral rules we identified were
translated into a statistical model of individual motion
behavior in a bounded area. In this section, we describe
the numerical implementation of the model and
compare the average spatial distribution of larvae and
the fraction of time a larva spent either moving or
motionless with the values obtained in the experiments.

2.3.1. Numerical model description

We developed a spatially explicit numerical model
based entirely on the individual behaviors measured
in the experiments. All the parameters estimated are
summarized in Table 1. In the model, the cockroaches
move in 2 dimensions preserving the time and the spatial
scales of experiments with a time step dt ¼ 0:2 s cycle�1:
At the beginning of a simulation, the cockroaches are
placed at the center of the arena and are in a moving
state. In the subsequent cycles, each individual can be in
one of two possible states: either it is moving or it is
stopped. Each larva adjusts its behavior according to its
current position (center or periphery) and to the rules
determined in the experiments. A larva in the peripheral
zone can move, stop or enter the central zone. The angle
with which a cockroach leaves the peripheral zone is
Table 1

Central zone Peripheral zone

Mean speed 1.1 cm s�1

(n=1332)

1.06 cm s�1

(n=1418)

Probability to stop 0.03 s�1 0.08 s�1

Probability to exit 0.12 s�1

Transport mean free path 2.32 cm

Geometric mean for angle

departure

Isotropic

phase function

36.6� /2.14
(1)

(n=1207)

Mean Stop duration PShort tShort tLong

0.93 5.87 s 700 s

(1) The symbol � / is taken from Limpert et al. (2001).
determined by generating random deviates according to
a log-normal distribution (see Fig. 5). A cockroach in
the central zone can either stop or walk randomly until
it reaches the peripheral zone. When a cockroach stops,
it first decides whether it is in the ‘‘awake’’ or ‘‘resting’’
state and then determines the duration during which it
will remain in that state. A total of 1000 simulation runs
have been performed.

2.3.2. Comparison of the model’s predictions with

experimental results

The radial distribution of larvae, in experiments and
simulations, was determined from the Cartesian co-
ordinates recorded over an interval of 60min. For
convenience, the arena was divided in 11 rings of 0.5 cm
width. To compare the output of the simulations with
the experimental results, we computed in both cases the
fraction of time a cockroach spent in the different rings.
Fig. 6 shows the fraction of time a larva spent either
moving or stopped as a function of its radial position.
There were no significant differences between experi-
ments and simulations in the fraction of time spent
moving (Kolmogorov–Smirnov two sample test, N1 ¼
N2 ¼ 11; Z ¼ 0:43; P > 0:05) or stopped (Kolmogorov–
Smirnov two sample test, N1 ¼ N2 ¼ 11; Z ¼ 1:28;
P > 0:05). In both cases, the cockroaches spent about
80% of their stopping time and about 50% of their
moving time in the peripheral zone. In the central zone,
the moving times in each ring are approximately
proportional to the surface.
3. Discussion

This study confirms that the spatial distribution of
cockroaches is affected by the presence of edges through
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thigmotaxis. In order to characterize animal movements
in a bounded space, we proposed a method of statistical
modeling of individual motion. Compared to the
standard procedures used to model animal movements,
two points are worth noting in the method we used:
(1) Close to the edge, we assumed a linear displace-

ment mode with a constant probability to leave the
peripheral zone per unit time. When they reached the
periphery of the arena, cockroaches were ‘trapped’ and
followed the walls. Similar results have been reported in
Paramecium bursaria or Dysdercus cingulatus (Fabr.)
(Farine and Lobreau, 1984; Kitamura 1986; Sikora et al.,
1992). In our experiments, the time spent in the
peripheral zone was greater than that expected when
calculated from the relative surface of the external ring.
This result suggests that cockroaches exhibit an active
tendency to walk along the walls of the arena. It is worth
noting that an individual might exhibit an ‘active’
tendency to perform a behavior (such as thigmotaxis),
while the termination of this behavior obeys a memory
less process (exit from the periphery). In foraging ants,
for example, workers can be actively engaged in trail-
following, but nonetheless they exhibit a constant
probability per unit of distance to leave the trail
(Calenbuhr and Deneubourg, 1992).
(2) The use of a random walk to model the movement

in the central zone of the arena enabled us to overcome
the problem of the quantification of the turning rate
(due to the artifacts inherent to path discretization when
using a time basis to digitize trajectories and to the
wobbling associated to the animal micromovements).
The transport mean free path computed, associated with
an isotropic phase function, reproduces correctly the
observed patterns of diffusion of the cockroaches in the
central zone. It might be argued that path modeling is
not reducible to a purely random walk but requires
knowledge of the changes of direction of the animals
(Bovet and Benhamou, 1988). We argue however that
our approach is more parsimonious and precise as long
as one wants only to explain and reproduce the global
pattern of animal movement. Furthermore, our method
allows us to apply an invariant diffusive property of
random walks (the average length of trajectories only
depends on the system geometry), to easily compute the
probability to stop in the central zone of the arena.
Wall-following behavior in cockroaches is primarily a

response to tactile stimuli and is not affected by vision
(Creed and Miller, 1990). In natural conditions,
cockroaches are mainly active during the night (Rivault,
1974) and, although cockroaches possess other naviga-
tional capabilities (Durier and Rivault, 1999), their
thigmotactic behavior could help them to reach a shelter
which are often located within cracks and crevices in
walls. In addition, because physical heterogeneities
affect the spatial distribution of organisms, wall-follow-
ing behavior might increase the probability to encounter
conspecifics close to the edges. As a consequence,
thigmotactic behavior can influence the collective
behavior exhibited by a group of animals. For example,
the initiation of aggregation is favored close to the edges
of an arena in the heteroptera Dysdercus cingulatus

(Fabr.) (Farine and Lobreau, 1984). The same is true for
the schooling behavior when fish are introduced in a
water tank (Suzuki et al., 2003).
Further work should investigate how the radius of

curvature of the arena or, conversely, the presence of
convex walls influence departures from the periphery,
and how the presence of physical heterogeneities (i.e.
obstacles) in the central or peripheral zone influence the
spatial distribution of individuals. The approach devel-
oped here might be extended to other experimental
contexts such as the analysis of the collective motion of
animals confined in a finite space or ecological contexts
such as the modeling of the foraging patterns of species
that combine orientation along structural guidelines and
random walk in open space.
At a larger scale, the characterization of animal

movements at habitat edges in spatially complex land-
scapes could be combined with the modeling approaches
already developed in landscape ecology (e.g. Johnson
et al., 1992) to predict the distribution and dynamics of
populations. For instance, an approach taking into
account the behavioral changes occurring close to edges
could be useful to describe the patterns of animal
movement through line corridors with sharp bound-
aries, such as hedgerows or fencerows (Tischendorf and
Wissel, 1997) or to understand the spatial distribution of
species in patchy landscapes, such as birds whose spatial
distribution is affected by forest boundaries that act as
movement conduits (Desrochers and Fortin, 2000).
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